Examining and Addressing Telemedicine Disparities Through the Lens of the Social Determinants of Health: A Qualitative Study of Patient and Provider During the COVID-19 Pandemic.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Christina P Wang, Rahma Mkuu, Katerina Andreadis, Kimberly A Muellers, Jessica S Ancker, Carol Horowitz, Rainu Kaushal, Jenny J Lin
{"title":"Examining and Addressing Telemedicine Disparities Through the Lens of the Social Determinants of Health: A Qualitative Study of Patient and Provider During the COVID-19 Pandemic.","authors":"Christina P Wang, Rahma Mkuu, Katerina Andreadis, Kimberly A Muellers, Jessica S Ancker, Carol Horowitz, Rainu Kaushal, Jenny J Lin","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Accelerated use of telemedicine during the COVID-19 pandemic enabled uninterrupted healthcare delivery while unmasking care disparities for several vulnerable communities. The social determinants of health (SDOH) serve as a critical model for understanding how the circumstances in which people are born, work, and live impact health outcomes. We performed semi-structured interviews to understand patients and providers' experiences with telemedicine encounters during the COVID-19 pandemic. Through a deductive approach, we applied the SDOH to determine telemedicine's role and impact within this framework. Overall, patient and provider interviews supported the use of existing SDOH domains to describe disparities in Internet access and telemedicine use, rather than reframing technology as a sixth SDOH. In order to mitigate the digital divide, we identify and propose solutions that address SDOH-related barriers that shape the use of health information technologies.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"1287-1296"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785927/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accelerated use of telemedicine during the COVID-19 pandemic enabled uninterrupted healthcare delivery while unmasking care disparities for several vulnerable communities. The social determinants of health (SDOH) serve as a critical model for understanding how the circumstances in which people are born, work, and live impact health outcomes. We performed semi-structured interviews to understand patients and providers' experiences with telemedicine encounters during the COVID-19 pandemic. Through a deductive approach, we applied the SDOH to determine telemedicine's role and impact within this framework. Overall, patient and provider interviews supported the use of existing SDOH domains to describe disparities in Internet access and telemedicine use, rather than reframing technology as a sixth SDOH. In order to mitigate the digital divide, we identify and propose solutions that address SDOH-related barriers that shape the use of health information technologies.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从健康的社会决定因素角度审视和解决远程医疗差异:在 COVID-19 大流行期间对患者和提供者的定性研究》。
在 COVID-19 大流行期间,远程医疗的加速使用实现了不间断的医疗保健服务,同时揭示了几个弱势社区的医疗差距。健康的社会决定因素 (SDOH) 是了解人们的出生、工作和生活环境如何影响健康结果的重要模式。我们进行了半结构化访谈,以了解 COVID-19 大流行期间患者和医疗服务提供者在远程医疗方面的经验。通过演绎法,我们运用 SDOH 来确定远程医疗在此框架中的作用和影响。总体而言,患者和医疗服务提供者的访谈支持使用现有的 SDOH 领域来描述互联网接入和远程医疗使用方面的差异,而不是将技术重新定义为第六个 SDOH。为了缩小数字鸿沟,我们确定并提出了解决方案,以解决影响健康信息技术使用的 SDOH 相关障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1