{"title":"From Free-text Drug Labels to Structured Medication Terminology with BERT and GPT.","authors":"Duy-Hoa Ngo, Bevan Koopman","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We present a method to enrich controlled medication terminology from free-text drug labels. This is important because, while controlled medication terminology capture well-structured medication information, much of the information pertaining to medications is still found in free-text. First, we compared different Named Entity Recognition (NER) models including rule-based, feature-based, deep learning-based models with Transformers as well as ChatGPT, few-shot and fine-tuned GPT-3 to find the most suitable model that accurately extracts medication entities (ingredients, brand, dose, etc.) from free-text. Then, a rule-based Relation Extraction algorithm transforms NER results into a well-structured medication knowledge graph. Finally, a Medication Searching method takes the knowledge graph and matches it to relevant medications in the terminology server. An empirical evaluation on real-world drug labels shows that BERT-CRF was the most effective NER model with F-measure 95%. After performing terms normalization, the Medication Searching achieved an accuracy of 77% for when matching a label to relevant medication in the terminology server. The NER and Medication Searching models could be deployed as a web service capable of accepting free-text queries and returning structured medication information; thus providing a useful means of better managing medications information found in different health systems.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"540-549"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785872/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present a method to enrich controlled medication terminology from free-text drug labels. This is important because, while controlled medication terminology capture well-structured medication information, much of the information pertaining to medications is still found in free-text. First, we compared different Named Entity Recognition (NER) models including rule-based, feature-based, deep learning-based models with Transformers as well as ChatGPT, few-shot and fine-tuned GPT-3 to find the most suitable model that accurately extracts medication entities (ingredients, brand, dose, etc.) from free-text. Then, a rule-based Relation Extraction algorithm transforms NER results into a well-structured medication knowledge graph. Finally, a Medication Searching method takes the knowledge graph and matches it to relevant medications in the terminology server. An empirical evaluation on real-world drug labels shows that BERT-CRF was the most effective NER model with F-measure 95%. After performing terms normalization, the Medication Searching achieved an accuracy of 77% for when matching a label to relevant medication in the terminology server. The NER and Medication Searching models could be deployed as a web service capable of accepting free-text queries and returning structured medication information; thus providing a useful means of better managing medications information found in different health systems.