HerediGene Population Study IT infrastructure: A model to support genomic research recruitment and precision public health.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
David P Taylor, Bret S E Heale, Benjamin Chisum, G Bryce Christensen, Darin F Wilcox, Kevin M Banks, Jacob S Tripp, Teresa Liu, James B Ruesch, Travis J Sheffield, Jesse W Breinholt, J Clay Harward, Erin C Hakoda, Ted May, Joshua L Bonkowsky, Nephi A Walton, Howard L McLeod, Lincoln D Nadauld, Pallavi Ranade-Kharkar
{"title":"HerediGene Population Study IT infrastructure: A model to support genomic research recruitment and precision public health.","authors":"David P Taylor, Bret S E Heale, Benjamin Chisum, G Bryce Christensen, Darin F Wilcox, Kevin M Banks, Jacob S Tripp, Teresa Liu, James B Ruesch, Travis J Sheffield, Jesse W Breinholt, J Clay Harward, Erin C Hakoda, Ted May, Joshua L Bonkowsky, Nephi A Walton, Howard L McLeod, Lincoln D Nadauld, Pallavi Ranade-Kharkar","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The HerediGene Population Study is a large research study focused on identifying new genetic biomarkers for disease prevention, diagnosis, prognosis, and development of new therapeutics. A substantial IT infrastructure evolved to reach enrollment targets and return results to participants. More than 170,000 participants have been enrolled in the study to date, with 5.87% of those whole genome sequenced and 0.46% of those genotyped harboring pathogenic variants. Among other purposes, this infrastructure supports: (1) identifying candidates from clinical criteria, (2) monitoring for qualifying clinical events (e.g., blood draw), (3) contacting candidates, (4) obtaining consent electronically, (5) initiating lab orders, (6) integrating consent and lab orders into clinical workflow, (7) de-identifying samples and clinical data, (8) shipping/transmitting samples and clinical data, (9) genotyping/sequencing samples, (10) and re-identifying and returning results for participants where applicable. This study may serve as a model for similar genomic research and precision public health initiatives.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"689-698"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785925/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The HerediGene Population Study is a large research study focused on identifying new genetic biomarkers for disease prevention, diagnosis, prognosis, and development of new therapeutics. A substantial IT infrastructure evolved to reach enrollment targets and return results to participants. More than 170,000 participants have been enrolled in the study to date, with 5.87% of those whole genome sequenced and 0.46% of those genotyped harboring pathogenic variants. Among other purposes, this infrastructure supports: (1) identifying candidates from clinical criteria, (2) monitoring for qualifying clinical events (e.g., blood draw), (3) contacting candidates, (4) obtaining consent electronically, (5) initiating lab orders, (6) integrating consent and lab orders into clinical workflow, (7) de-identifying samples and clinical data, (8) shipping/transmitting samples and clinical data, (9) genotyping/sequencing samples, (10) and re-identifying and returning results for participants where applicable. This study may serve as a model for similar genomic research and precision public health initiatives.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HerediGene 人口研究 IT 基础设施:支持基因组研究招聘和精准公共卫生的模式。
HerediGene 群体研究是一项大型研究,重点是为疾病预防、诊断、预后和新疗法的开发确定新的基因生物标志物。为了达到入选目标并将结果反馈给参与者,大量的信息技术基础设施不断发展。迄今为止,已有超过 170,000 名参与者参与了这项研究,其中 5.87% 的参与者进行了全基因组测序,0.46% 的基因分型者携带致病变异。除其他目的外,该基础设施还支持(1) 根据临床标准确定候选者,(2) 监测合格的临床事件(如抽血),(3) 联系候选者,(4) 以电子方式获得同意书,(5) 启动实验订单,(6) 将同意书和实验订单整合到临床工作流程中,(7) 解除样本和临床数据的身份识别,(8) 运送/传输样本和临床数据,(9) 对样本进行基因分型/测序,(10) 重新识别参与者身份并酌情返回结果。这项研究可作为类似基因组研究和精准公共卫生计划的典范。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1