Patient-level thyroid cancer classification using attention multiple instance learning on fused multi-scale ultrasound image features.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Luoting Zhuang, Vedrana Ivezic, Jeffrey Feng, Chushu Shen, Ashwath Radhachandran, Vivek Sant, Maitraya Patel, Rinat Masamed, Corey Arnold, William Speier
{"title":"Patient-level thyroid cancer classification using attention multiple instance learning on fused multi-scale ultrasound image features.","authors":"Luoting Zhuang, Vedrana Ivezic, Jeffrey Feng, Chushu Shen, Ashwath Radhachandran, Vivek Sant, Maitraya Patel, Rinat Masamed, Corey Arnold, William Speier","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>For patients with thyroid nodules, the ability to detect and diagnose a malignant nodule is the key to creating an appropriate treatment plan. However, assessments of ultrasound images do not accurately represent malignancy, and often require a biopsy to confirm the diagnosis. Deep learning techniques can classify thyroid nodules from ultrasound images, but current methods depend on manually annotated nodule segmentations. Furthermore, the heterogeneity in the level of magnification across ultrasound images presents a significant obstacle to existing methods. We developed a multi-scale, attention-based multiple-instance learning model which fuses both global and local features of different ultrasound frames to achieve patient-level malignancy classification. Our model demonstrates improved performance with an AUROC of 0.785 (p<0.05) and AUPRC of 0.539, significantly surpassing the baseline model trained on clinical features with an AUROC of 0.667 and AUPRC of 0.444. Improved classification performance better triages the need for biopsy.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"1344-1353"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785838/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For patients with thyroid nodules, the ability to detect and diagnose a malignant nodule is the key to creating an appropriate treatment plan. However, assessments of ultrasound images do not accurately represent malignancy, and often require a biopsy to confirm the diagnosis. Deep learning techniques can classify thyroid nodules from ultrasound images, but current methods depend on manually annotated nodule segmentations. Furthermore, the heterogeneity in the level of magnification across ultrasound images presents a significant obstacle to existing methods. We developed a multi-scale, attention-based multiple-instance learning model which fuses both global and local features of different ultrasound frames to achieve patient-level malignancy classification. Our model demonstrates improved performance with an AUROC of 0.785 (p<0.05) and AUPRC of 0.539, significantly surpassing the baseline model trained on clinical features with an AUROC of 0.667 and AUPRC of 0.444. Improved classification performance better triages the need for biopsy.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用融合多尺度超声图像特征的注意力多实例学习进行患者级甲状腺癌分类。
对于甲状腺结节患者来说,检测和诊断恶性结节的能力是制定适当治疗方案的关键。然而,对超声图像的评估并不能准确代表恶性程度,通常需要进行活检才能确诊。深度学习技术可以从超声图像中对甲状腺结节进行分类,但目前的方法依赖于人工标注的结节分割。此外,超声图像放大程度的异质性也是现有方法的一大障碍。我们开发了一种基于注意力的多尺度多实例学习模型,该模型融合了不同超声帧的全局和局部特征,以实现患者级别的恶性肿瘤分类。我们的模型提高了性能,AUROC 为 0.785(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1