Predicting premature discontinuation of medication for opioid use disorder from electronic medical records.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Ivan Lopez, Sajjad Fouladvand, Scott Kollins, Chwen-Yuen Angie Chen, Jeremiah Bertz, Tina Hernandez-Boussard, Anna Lembke, Keith Humphreys, Adam S Miner, Jonathan H Chen
{"title":"Predicting premature discontinuation of medication for opioid use disorder from electronic medical records.","authors":"Ivan Lopez, Sajjad Fouladvand, Scott Kollins, Chwen-Yuen Angie Chen, Jeremiah Bertz, Tina Hernandez-Boussard, Anna Lembke, Keith Humphreys, Adam S Miner, Jonathan H Chen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Medications such as buprenorphine-naloxone are among the most effective treatments for opioid use disorder, but limited retention in treatment limits long-term outcomes. In this study, we assess the feasibility of a machine learning model to predict retention vs. attrition in medication for opioid use disorder (MOUD) treatment using electronic medical record data including concepts extracted from clinical notes. A logistic regression classifier was trained on 374 MOUD treatments with 68% resulting in potential attrition. On a held-out test set of 157 events, the full model achieved an area under the receiver operating characteristic curve (AUROC) of 0.77 (95% CI: 0.64-0.90) and AUROC of 0.74 (95% CI: 0.62-0.87) with a limited model using only structured EMR data. Risk prediction for opioid MOUD retention vs. attrition is feasible given electronic medical record data, even without necessarily incorporating concepts extracted from clinical notes.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"1067-1076"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785878/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Medications such as buprenorphine-naloxone are among the most effective treatments for opioid use disorder, but limited retention in treatment limits long-term outcomes. In this study, we assess the feasibility of a machine learning model to predict retention vs. attrition in medication for opioid use disorder (MOUD) treatment using electronic medical record data including concepts extracted from clinical notes. A logistic regression classifier was trained on 374 MOUD treatments with 68% resulting in potential attrition. On a held-out test set of 157 events, the full model achieved an area under the receiver operating characteristic curve (AUROC) of 0.77 (95% CI: 0.64-0.90) and AUROC of 0.74 (95% CI: 0.62-0.87) with a limited model using only structured EMR data. Risk prediction for opioid MOUD retention vs. attrition is feasible given electronic medical record data, even without necessarily incorporating concepts extracted from clinical notes.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过电子病历预测阿片类药物使用障碍患者过早停药的情况。
丁丙诺啡-纳洛酮等药物是治疗阿片类药物使用障碍最有效的方法之一,但治疗的保留率有限,限制了长期治疗效果。在本研究中,我们利用电子病历数据(包括从临床笔记中提取的概念)评估了机器学习模型预测阿片类药物使用障碍(MOUD)治疗保留率与流失率的可行性。我们在 374 次阿片类药物使用障碍治疗中训练了逻辑回归分类器,其中 68% 的治疗可能导致流失。在由 157 个事件组成的保留测试集上,完整模型的接收者操作特征曲线下面积 (AUROC) 为 0.77(95% CI:0.64-0.90),而仅使用结构化 EMR 数据的有限模型的接收者操作特征曲线下面积 (AUROC) 为 0.74(95% CI:0.62-0.87)。利用电子病历数据对阿片类药物 MOUD 的保留与流失进行风险预测是可行的,即使不一定要结合从临床笔记中提取的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1