Uri Kartoun, Kingsley Njoku, Tesfaye Yadete, Sivan Ravid, Eileen Koski, William Ogallo, Joao Bettencourt-Silva, Natasha Mulligan, Jianying Hu, Julia Liu, Thaddeus Stappenbeck, Vibha Anand
{"title":"Subtyping Gastrointestinal Surgical Outcomes from Real World Data: A Comprehensive Analysis of UK Biobank.","authors":"Uri Kartoun, Kingsley Njoku, Tesfaye Yadete, Sivan Ravid, Eileen Koski, William Ogallo, Joao Bettencourt-Silva, Natasha Mulligan, Jianying Hu, Julia Liu, Thaddeus Stappenbeck, Vibha Anand","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic gastrointestinal (GI) conditions, such as inflammatory bowel diseases (IBD), offer a promising opportunity to create classification systems that can enhance the accuracy of predicting the most effective therapies and prognosis for each patient. Here, we present a novel methodology to explore disease subtypes using our open-sourced BiomedSciAI toolkit. Applying methods available in this toolkit on the UK Biobank, including subpopulation-based feature selection and multi-dimensional subset scanning, we aimed to discover unique subgroups from GI surgery cohorts. Of a 12,073-patient cohort, a subgroup of 440 IBD patients was discovered with an increased risk of a subsequent GI surgery (OR: 2.21, 95% CI [1.81-2.69]). We iteratively demonstrate the discovery process using an additional cohort (with a narrower definition of GI surgery). Our results show that the iterative process can refine the subgroup discovery process and generate novel hypotheses to investigate determinants of treatment response.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"426-435"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785930/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic gastrointestinal (GI) conditions, such as inflammatory bowel diseases (IBD), offer a promising opportunity to create classification systems that can enhance the accuracy of predicting the most effective therapies and prognosis for each patient. Here, we present a novel methodology to explore disease subtypes using our open-sourced BiomedSciAI toolkit. Applying methods available in this toolkit on the UK Biobank, including subpopulation-based feature selection and multi-dimensional subset scanning, we aimed to discover unique subgroups from GI surgery cohorts. Of a 12,073-patient cohort, a subgroup of 440 IBD patients was discovered with an increased risk of a subsequent GI surgery (OR: 2.21, 95% CI [1.81-2.69]). We iteratively demonstrate the discovery process using an additional cohort (with a narrower definition of GI surgery). Our results show that the iterative process can refine the subgroup discovery process and generate novel hypotheses to investigate determinants of treatment response.