The SIMPLE Architectural Pattern for Integrating Patient-Facing Apps into Clinical Workflows: Desiderata and Application for Lung Cancer Screening.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Christian A Balbin, Kensaku Kawamoto
{"title":"The SIMPLE Architectural Pattern for Integrating Patient-Facing Apps into Clinical Workflows: Desiderata and Application for Lung Cancer Screening.","authors":"Christian A Balbin, Kensaku Kawamoto","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In December 2022, regulations from the U.S. Office of the National Coordinator for Health IT came into effect that require electronic health record (EHR) systems to accept the connection of any patient-facing digital health app using the SMART on FHIR standard. However, little has been reported with regard to architectural patterns that can be reused to take advantage of this industry development and integrate patient-facing apps into clinical workflows. To address this need, we propose SIMPLE, short for Standards-based Implementation Maximizing Portability Leveraging the EHR. The SIMPLE architectural pattern was designed to meet several key desiderata: do not require patients to install new software; do not retain patient data outside of the EHR; leverage EHRs' existing personal health record (PHR) capabilities to optimize user experience; and maximize portability. Using this pattern, an application for lung cancer screening known as MyLungHealth has been designed and is undergoing iterative user-centered enhancement.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"844-853"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785839/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In December 2022, regulations from the U.S. Office of the National Coordinator for Health IT came into effect that require electronic health record (EHR) systems to accept the connection of any patient-facing digital health app using the SMART on FHIR standard. However, little has been reported with regard to architectural patterns that can be reused to take advantage of this industry development and integrate patient-facing apps into clinical workflows. To address this need, we propose SIMPLE, short for Standards-based Implementation Maximizing Portability Leveraging the EHR. The SIMPLE architectural pattern was designed to meet several key desiderata: do not require patients to install new software; do not retain patient data outside of the EHR; leverage EHRs' existing personal health record (PHR) capabilities to optimize user experience; and maximize portability. Using this pattern, an application for lung cancer screening known as MyLungHealth has been designed and is undergoing iterative user-centered enhancement.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将面向患者的应用程序整合到临床工作流程中的 SIMPLE 架构模式:肺癌筛查的需求和应用。
2022 年 12 月,美国国家健康 IT 协调员办公室的规定生效,要求电子健康记录 (EHR) 系统接受任何使用 SMART on FHIR 标准的面向患者的数字健康应用程序的连接。然而,关于可重复使用的架构模式,以利用这一行业发展并将面向患者的应用程序集成到临床工作流中的报道却很少。为了满足这一需求,我们提出了 SIMPLE(基于标准的实施最大化便携性利用 EHR 的简称)。SIMPLE 架构模式旨在满足以下几个关键要求:不要求患者安装新软件;不在 EHR 之外保留患者数据;利用 EHR 现有的个人健康记录 (PHR) 功能优化用户体验;以及最大限度地提高便携性。利用这种模式,我们设计了一款名为 MyLungHealth 的肺癌筛查应用程序,目前正在进行以用户为中心的迭代改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1