Multimodal Pediatric Lymphoma Detection using PET and MRI.

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Hongzhi Wang, Amirhossein Sarrami, Joy Tzung-Yu Wu, Lucia Baratto, Arjun Sharma, Ken C L Wong, Shashi Bhushan Singh, Heike E Daldrup-Link, Tanveer Syeda-Mahmood
{"title":"Multimodal Pediatric Lymphoma Detection using PET and MRI.","authors":"Hongzhi Wang, Amirhossein Sarrami, Joy Tzung-Yu Wu, Lucia Baratto, Arjun Sharma, Ken C L Wong, Shashi Bhushan Singh, Heike E Daldrup-Link, Tanveer Syeda-Mahmood","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Lymphoma is one of the most common types of cancer for children (ages 0 to 19). Due to the reduced radiation exposure, PET/MR systems that allow simultaneous PET and MR imaging have become the standard of care for diagnosing cancers and monitoring tumor response to therapy in the pediatric population. In this work, we developed a multimodal deep learning algorithm for automatic pediatric lymphoma detection using PET and MRI. Through innovative designs such as standardized uptake value (SUV) guided tumor candidate generation, location aware classification model learning and weighted multimodal feature fusion, our algorithm can be effectively trained with limited data and achieved superior tumor detection performance over the state-of-the-art in our experiments.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"736-743"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785920/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lymphoma is one of the most common types of cancer for children (ages 0 to 19). Due to the reduced radiation exposure, PET/MR systems that allow simultaneous PET and MR imaging have become the standard of care for diagnosing cancers and monitoring tumor response to therapy in the pediatric population. In this work, we developed a multimodal deep learning algorithm for automatic pediatric lymphoma detection using PET and MRI. Through innovative designs such as standardized uptake value (SUV) guided tumor candidate generation, location aware classification model learning and weighted multimodal feature fusion, our algorithm can be effectively trained with limited data and achieved superior tumor detection performance over the state-of-the-art in our experiments.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用正电子发射计算机断层显像和核磁共振成像进行小儿淋巴瘤多模态检测
淋巴瘤是儿童(0 至 19 岁)最常见的癌症类型之一。由于减少了辐射暴露,可同时进行 PET 和 MR 成像的 PET/MR 系统已成为诊断癌症和监测肿瘤对儿科治疗反应的标准。在这项工作中,我们开发了一种利用 PET 和 MRI 自动检测儿科淋巴瘤的多模态深度学习算法。通过标准化摄取值(SUV)引导的候选肿瘤生成、位置感知分类模型学习和加权多模态特征融合等创新设计,我们的算法可以用有限的数据进行有效训练,并在实验中取得了优于最先进水平的肿瘤检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ethicara for Responsible AI in Healthcare: A System for Bias Detection and AI Risk Management. Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness Constraint. Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets. Transferable and Interpretable Treatment Effectiveness Prediction for Ovarian Cancer via Multimodal Deep Learning. Understanding Cancer Caregiving and Predicting Burden: An Analytics and Machine Learning Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1