{"title":"SIR model with social gatherings","authors":"Roberto Cortez","doi":"10.1017/jpr.2023.65","DOIUrl":null,"url":null,"abstract":"<p>We introduce an extension to Kermack and McKendrick’s classic susceptible–infected–recovered (SIR) model in epidemiology, whose underlying mechanism of infection consists of individuals attending randomly generated social gatherings. This gives rise to a system of ordinary differential equations (ODEs) where the force of the infection term depends non-linearly on the proportion of infected individuals. Some specific instances yield models already studied in the literature, to which the present work provides a probabilistic foundation. The basic reproduction number is seen to depend quadratically on the average size of the gatherings, which may be helpful in understanding how restrictions on social gatherings affect the spread of the disease. We rigorously justify our model by showing that the system of ODEs is the mean-field limit of the jump Markov process corresponding to the evolution of the disease in a finite population.</p>","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"13 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2023.65","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce an extension to Kermack and McKendrick’s classic susceptible–infected–recovered (SIR) model in epidemiology, whose underlying mechanism of infection consists of individuals attending randomly generated social gatherings. This gives rise to a system of ordinary differential equations (ODEs) where the force of the infection term depends non-linearly on the proportion of infected individuals. Some specific instances yield models already studied in the literature, to which the present work provides a probabilistic foundation. The basic reproduction number is seen to depend quadratically on the average size of the gatherings, which may be helpful in understanding how restrictions on social gatherings affect the spread of the disease. We rigorously justify our model by showing that the system of ODEs is the mean-field limit of the jump Markov process corresponding to the evolution of the disease in a finite population.
期刊介绍:
Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.