{"title":"A Dilated MultiRes Visual Attention U-Net for historical document image binarization","authors":"Nikolaos Detsikas, Nikolaos Mitianoudis, Nikolaos Papamarkos","doi":"10.1016/j.image.2024.117102","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The task of binarization of historical </span>document images<span> has been in the forefront of image processing research, during the digital transition of libraries. The process of storing and transcribing valuable historical printed or handwritten material can salvage world cultural heritage and make it available online without physical attendance. The task of binarization can be viewed as a pre-processing step that attempts to separate the printed/handwritten characters in the image from possible noise and stains, which will assist in the </span></span>Optical Character Recognition<span><span> (OCR) process. Many approaches have been proposed before, including deep learning based approaches. In this article, we propose a U-Net style deep learning architecture that incorporates many other developments of deep learning, including residual connections, multi-resolution connections, visual attention blocks and dilated convolution blocks for upsampling. The novelties in the proposed DMVAnet lie in the use of these elements in combination in a novel U-Net style architecture and the application of DMVAnet in image binarization for the first time. In addition, the proposed DMVAnet is a very computationally lightweight network that performs very close or even better than the state-of-the-art approaches with a fraction of the network size and parameters. Finally, it can be used on platforms with restricted processing power and system resources, such as </span>mobile devices and through scaling can result in inference times that allow for real-time applications.</span></p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"122 ","pages":"Article 117102"},"PeriodicalIF":3.4000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000031","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The task of binarization of historical document images has been in the forefront of image processing research, during the digital transition of libraries. The process of storing and transcribing valuable historical printed or handwritten material can salvage world cultural heritage and make it available online without physical attendance. The task of binarization can be viewed as a pre-processing step that attempts to separate the printed/handwritten characters in the image from possible noise and stains, which will assist in the Optical Character Recognition (OCR) process. Many approaches have been proposed before, including deep learning based approaches. In this article, we propose a U-Net style deep learning architecture that incorporates many other developments of deep learning, including residual connections, multi-resolution connections, visual attention blocks and dilated convolution blocks for upsampling. The novelties in the proposed DMVAnet lie in the use of these elements in combination in a novel U-Net style architecture and the application of DMVAnet in image binarization for the first time. In addition, the proposed DMVAnet is a very computationally lightweight network that performs very close or even better than the state-of-the-art approaches with a fraction of the network size and parameters. Finally, it can be used on platforms with restricted processing power and system resources, such as mobile devices and through scaling can result in inference times that allow for real-time applications.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.