Reusable Salt-template Strategy for Synthesis of Porous Nitrogen-rich Carbon Boosts H2S Selective Oxidation

IF 10.7 1区 工程技术 Q1 CHEMISTRY, PHYSICAL Green Energy & Environment Pub Date : 2024-01-14 DOI:10.1016/j.gee.2024.01.005
Xu Liu, Liang Shan, Xiaoxue Sun, Tianxin Wang, Zhongqing Liu, Yuefeng Liu
{"title":"Reusable Salt-template Strategy for Synthesis of Porous Nitrogen-rich Carbon Boosts H2S Selective Oxidation","authors":"Xu Liu, Liang Shan, Xiaoxue Sun, Tianxin Wang, Zhongqing Liu, Yuefeng Liu","doi":"10.1016/j.gee.2024.01.005","DOIUrl":null,"url":null,"abstract":"<p>Removing hydrogen sulfide (H<sub>2</sub>S) via the selective oxidation has been considered an effective way to further purify the indusial sulfur-containing due to it can completely transform residual H<sub>2</sub>S into elemental sulfur. While N-doped porous carbon was applied to H<sub>2</sub>S selective oxidation, a sustainable methodology for the synthesis of efficient and stable N-doped carbon catalysts remains a difficulty, limiting its future development in large-scale applications. Herein, we present porous, honeycomb-like N-doped carbon catalysts with large specific surface areas, high pyridinic N content, and numerous structural defects for H<sub>2</sub>S selective oxidation prepared using reusable NaCl as the template. The as-prepared NC-10-800 catalyst exhibits excellent catalytic performance (sulfur formation rate of 784 g<sub>sulfur</sub>·kg<sub>cat.</sub><sup>-1</sup>·h<sup>-1</sup>), outstanding stability (&gt; 100 h), and excellent anti-water vapor, anti-CO<sub>2</sub> and anti-oxidation properties, suggesting significant potential for practical industrial application. The characterization results and kinetic study demonstrate that the large surface areas and structural defects created by the molten salt at high temperature enhance the exposure of pyridinic N sites and thus accelerate the catalytic activity. Importantly, the water-soluble NaCl template could be easily washed from the carbon nanomaterials, and thus the downstream salt-containing wastewater could be subsequently reused for the dissolution of carbon precursors. This environment-friendly, low-cost, reusable salt-template strategy has significant implications for the development of N-doped carbon catalysts for practical applications.</p>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"107 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.gee.2024.01.005","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Removing hydrogen sulfide (H2S) via the selective oxidation has been considered an effective way to further purify the indusial sulfur-containing due to it can completely transform residual H2S into elemental sulfur. While N-doped porous carbon was applied to H2S selective oxidation, a sustainable methodology for the synthesis of efficient and stable N-doped carbon catalysts remains a difficulty, limiting its future development in large-scale applications. Herein, we present porous, honeycomb-like N-doped carbon catalysts with large specific surface areas, high pyridinic N content, and numerous structural defects for H2S selective oxidation prepared using reusable NaCl as the template. The as-prepared NC-10-800 catalyst exhibits excellent catalytic performance (sulfur formation rate of 784 gsulfur·kgcat.-1·h-1), outstanding stability (> 100 h), and excellent anti-water vapor, anti-CO2 and anti-oxidation properties, suggesting significant potential for practical industrial application. The characterization results and kinetic study demonstrate that the large surface areas and structural defects created by the molten salt at high temperature enhance the exposure of pyridinic N sites and thus accelerate the catalytic activity. Importantly, the water-soluble NaCl template could be easily washed from the carbon nanomaterials, and thus the downstream salt-containing wastewater could be subsequently reused for the dissolution of carbon precursors. This environment-friendly, low-cost, reusable salt-template strategy has significant implications for the development of N-doped carbon catalysts for practical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于合成多孔富氮碳的可重复使用盐模板策略可促进 H2S 选择性氧化
通过选择性氧化去除硫化氢(H2S)被认为是进一步净化含硫工业的有效方法,因为它可以将残留的 H2S 完全转化为元素硫。虽然掺杂 N 的多孔碳已被应用于 H2S 选择性氧化,但合成高效稳定的掺杂 N 的碳催化剂的可持续方法仍是一个难题,限制了其未来在大规模应用中的发展。在此,我们以可重复使用的 NaCl 为模板,制备了具有大比表面积、高吡啶 N 含量和大量结构缺陷的多孔蜂窝状 N-掺杂碳催化剂,用于 H2S 选择性氧化。所制备的 NC-10-800 催化剂具有优异的催化性能(硫形成率为 784 gsulfur-kgcat.-1-h-1)、出色的稳定性(100 h)以及出色的抗水蒸气、抗 CO2 和抗氧化性能,表明其在实际工业应用中具有巨大潜力。表征结果和动力学研究表明,高温熔盐产生的大表面积和结构缺陷增强了吡啶 N 位点的暴露,从而加快了催化活性。重要的是,水溶性氯化钠模板可以很容易地从碳纳米材料中洗掉,因此下游的含盐废水随后可以重新用于碳前驱体的溶解。这种环境友好型、低成本、可重复使用的盐模板策略对掺杂 N 的碳催化剂的实际应用开发具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Green Energy & Environment
Green Energy & Environment Energy-Renewable Energy, Sustainability and the Environment
CiteScore
16.80
自引率
3.80%
发文量
332
审稿时长
12 days
期刊介绍: Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.
期刊最新文献
Construction of two-dimensional heterojunctions based on metal-free semiconductor materials and Covalent Organic Frameworks for exceptional solar energy catalysis Recent advancements in two-dimensional transition metal dichalcogenide materials towards hydrogen-evolution electrocatalysis Research on the application of defect engineering in the field of environmental catalysis Recyclable bio-based epoxy resin thermoset polymer from wood for circular economy Ti3C2 MXene nanosheets integrated cobalt-doped nickel hydroxide heterostructured composite: An efficient electrocatalyst for overall water-splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1