Multispectral-derived genotypic similarities from budget cameras allow grain yield prediction and genomic selection augmentation in single and multi-environment scenarios in spring wheat
Tomasz Mróz, Sahameh Shafiee, Jose Crossa, Osval A. Montesinos-Lopez, Morten Lillemo
{"title":"Multispectral-derived genotypic similarities from budget cameras allow grain yield prediction and genomic selection augmentation in single and multi-environment scenarios in spring wheat","authors":"Tomasz Mróz, Sahameh Shafiee, Jose Crossa, Osval A. Montesinos-Lopez, Morten Lillemo","doi":"10.1007/s11032-024-01449-w","DOIUrl":null,"url":null,"abstract":"<p>With abundant available genomic data, genomic selection has become routine in many plant breeding programs. Multispectral data captured by UAVs showed potential for grain yield (GY) prediction in many plant species using machine learning; however, the possibilities of utilizing this data to augment genomic prediction models still need to be explored. We collected high-throughput phenotyping (HTP) multispectral data in a genotyped multi-environment large-scale field trial using two cost-effective cameras to fill this gap. We tested back to back the prediction ability of GY prediction models, including genomic (G matrix), multispectral-derived (M matrix), and environmental (E matrix) relationships using best linear unbiased predictor (BLUP) methodology in single and multi-environment scenarios. We discovered that M allows for GY prediction comparable to the G matrix and that models using both G and M matrices show superior accuracies and errors compared with G or M alone, both in single and multi-environment scenarios. We showed that the M matrix is not entirely environment-specific, and the genotypic relationships become more robust with more data capture sessions over the season. We discovered that the optimal time for data capture occurs during grain filling and that camera bands with the highest heritability are important for GY prediction using the M matrix. We showcased that GY prediction can be performed using only an RGB camera, and even a single data capture session can yield valuable data for GY prediction. This study contributes to a better understanding of multispectral data and its relationships. It provides a flexible framework for improving GS protocols without significant investments or software customization.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"65 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-024-01449-w","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
With abundant available genomic data, genomic selection has become routine in many plant breeding programs. Multispectral data captured by UAVs showed potential for grain yield (GY) prediction in many plant species using machine learning; however, the possibilities of utilizing this data to augment genomic prediction models still need to be explored. We collected high-throughput phenotyping (HTP) multispectral data in a genotyped multi-environment large-scale field trial using two cost-effective cameras to fill this gap. We tested back to back the prediction ability of GY prediction models, including genomic (G matrix), multispectral-derived (M matrix), and environmental (E matrix) relationships using best linear unbiased predictor (BLUP) methodology in single and multi-environment scenarios. We discovered that M allows for GY prediction comparable to the G matrix and that models using both G and M matrices show superior accuracies and errors compared with G or M alone, both in single and multi-environment scenarios. We showed that the M matrix is not entirely environment-specific, and the genotypic relationships become more robust with more data capture sessions over the season. We discovered that the optimal time for data capture occurs during grain filling and that camera bands with the highest heritability are important for GY prediction using the M matrix. We showcased that GY prediction can be performed using only an RGB camera, and even a single data capture session can yield valuable data for GY prediction. This study contributes to a better understanding of multispectral data and its relationships. It provides a flexible framework for improving GS protocols without significant investments or software customization.
期刊介绍:
Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer.
All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others.
Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards.
Molecular Breeding core areas:
Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.