S. A. Voropaev, N. V. Dushenko, A. P. Krivenko, V. S. Fedulov, K. M. Ryazantsev, A. V. Korochantsev
{"title":"Features of Degassing of the Allende (CV3) Carbonaceous Chondrite in the Temperature Interval of 200–800°C","authors":"S. A. Voropaev, N. V. Dushenko, A. P. Krivenko, V. S. Fedulov, K. M. Ryazantsev, A. V. Korochantsev","doi":"10.1134/S0038094623050076","DOIUrl":null,"url":null,"abstract":"<p>The degassing of Allende carbonaceous chondrite (CV3 type) was studied using a setup specially designed for this purpose. The experiments involved stepwise heating (without gas accumulation) and isothermal annealing of meteorite samples with the composition of released gases determined through gas chromatography methods in the temperature range from 200 to 800°C. To account for sorbed water, degassing at 50 and 110°C was additionally analyzed. The Raman and IR spectra of both the primary Allende substance and the substance after its annealing at three temperatures (200, 500, and 800°C) were obtained. These spectra were used to trace the thermal transformation of the substance of the meteorite’s parent body and estimate the maximum temperature of metamorphism. The results were compared with the degassing of the Murchison carbonaceous chondrite of another type (CM2).</p>","PeriodicalId":778,"journal":{"name":"Solar System Research","volume":"57 6","pages":"592 - 602"},"PeriodicalIF":0.6000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar System Research","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0038094623050076","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The degassing of Allende carbonaceous chondrite (CV3 type) was studied using a setup specially designed for this purpose. The experiments involved stepwise heating (without gas accumulation) and isothermal annealing of meteorite samples with the composition of released gases determined through gas chromatography methods in the temperature range from 200 to 800°C. To account for sorbed water, degassing at 50 and 110°C was additionally analyzed. The Raman and IR spectra of both the primary Allende substance and the substance after its annealing at three temperatures (200, 500, and 800°C) were obtained. These spectra were used to trace the thermal transformation of the substance of the meteorite’s parent body and estimate the maximum temperature of metamorphism. The results were compared with the degassing of the Murchison carbonaceous chondrite of another type (CM2).
期刊介绍:
Solar System Research publishes articles concerning the bodies of the Solar System, i.e., planets and their satellites, asteroids, comets, meteoric substances, and cosmic dust. The articles consider physics, dynamics and composition of these bodies, and techniques of their exploration. The journal addresses the problems of comparative planetology, physics of the planetary atmospheres and interiors, cosmochemistry, as well as planetary plasma environment and heliosphere, specifically those related to solar-planetary interactions. Attention is paid to studies of exoplanets and complex problems of the origin and evolution of planetary systems including the solar system, based on the results of astronomical observations, laboratory studies of meteorites, relevant theoretical approaches and mathematical modeling. Alongside with the original results of experimental and theoretical studies, the journal publishes scientific reviews in the field of planetary exploration, and notes on observational results.