Michelle Costa Galbas, Hendrik Cornelius Straky, Florian Meissner, Johanna Reuter, Marius Schimmel, Sebastian Grundmann, Martin Czerny, Wolfgang Bothe
{"title":"Cardiac dimensions and hemodynamics in healthy juvenile Landrace swine","authors":"Michelle Costa Galbas, Hendrik Cornelius Straky, Florian Meissner, Johanna Reuter, Marius Schimmel, Sebastian Grundmann, Martin Czerny, Wolfgang Bothe","doi":"10.1186/s12947-023-00321-9","DOIUrl":null,"url":null,"abstract":"Swine are frequently used as animal model for cardiovascular research, especially in terms of representativity of human anatomy and physiology. Reference values for the most common species used in research are important for planning and execution of animal testing. Transesophageal echocardiography is the gold standard for intraoperative imaging, but can be technically challenging in swine. Its predecessor, epicardial echocardiography (EE), is a simple and fast intraoperative imaging technique, which allows comprehensive and goal-directed assessment. However, there are few echocardiographic studies describing echocardiographic parameters in juvenile swine, none of them using EE. Therefore, in this study, we provide a comprehensive dataset on multiple geometric and functional echocardiographic parameters, as well as basic hemodynamic parameters in swine using EE. The data collection was performed during animal testing in ten female swine (German Landrace, 104.4 ± 13.0 kg) before left ventricular assist device implantation. Hemodynamic data was recorded continuously, before and during EE. The herein described echocardiographic measurements were acquired according to a standardized protocol, encompassing apical, left ventricular short axis and long axis as well as epiaortic windows. In total, 50 echocardiographic parameters and 10 hemodynamic parameters were assessed. Epicardial echocardiography was successfully performed in all animals, with a median screening time of 14 min (interquartile range 11–18 min). Referring to left ventricular function, ejection fraction was 51.6 ± 5.9% and 51.2 ± 6.2% using the Teichholz and Simpson methods, respectively. Calculated ventricular mass was 301.1 ± 64.0 g, as the left ventricular end-systolic and end-diastolic diameters were 35.3 ± 2.5 mm and 48.2 ± 3.5 mm, respectively. The mean heart rate was 103 ± 28 bpm, mean arterial pressure was 101 ± 20 mmHg and mean flow at the common carotid artery was 627 ± 203 mL/min. Epicardial echocardiography allows comprehensive assessment of most common echocardiographic parameters. Compared to humans, there are important differences in swine with respect to ventricular mass, size and wall thickness, especially in the right heart. Most hemodynamic parameters were comparable between swine and humans. This data supports study planning, animal and device selection, reinforcing the three R principles in animal research. ","PeriodicalId":9613,"journal":{"name":"Cardiovascular Ultrasound","volume":"5 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Ultrasound","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12947-023-00321-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Swine are frequently used as animal model for cardiovascular research, especially in terms of representativity of human anatomy and physiology. Reference values for the most common species used in research are important for planning and execution of animal testing. Transesophageal echocardiography is the gold standard for intraoperative imaging, but can be technically challenging in swine. Its predecessor, epicardial echocardiography (EE), is a simple and fast intraoperative imaging technique, which allows comprehensive and goal-directed assessment. However, there are few echocardiographic studies describing echocardiographic parameters in juvenile swine, none of them using EE. Therefore, in this study, we provide a comprehensive dataset on multiple geometric and functional echocardiographic parameters, as well as basic hemodynamic parameters in swine using EE. The data collection was performed during animal testing in ten female swine (German Landrace, 104.4 ± 13.0 kg) before left ventricular assist device implantation. Hemodynamic data was recorded continuously, before and during EE. The herein described echocardiographic measurements were acquired according to a standardized protocol, encompassing apical, left ventricular short axis and long axis as well as epiaortic windows. In total, 50 echocardiographic parameters and 10 hemodynamic parameters were assessed. Epicardial echocardiography was successfully performed in all animals, with a median screening time of 14 min (interquartile range 11–18 min). Referring to left ventricular function, ejection fraction was 51.6 ± 5.9% and 51.2 ± 6.2% using the Teichholz and Simpson methods, respectively. Calculated ventricular mass was 301.1 ± 64.0 g, as the left ventricular end-systolic and end-diastolic diameters were 35.3 ± 2.5 mm and 48.2 ± 3.5 mm, respectively. The mean heart rate was 103 ± 28 bpm, mean arterial pressure was 101 ± 20 mmHg and mean flow at the common carotid artery was 627 ± 203 mL/min. Epicardial echocardiography allows comprehensive assessment of most common echocardiographic parameters. Compared to humans, there are important differences in swine with respect to ventricular mass, size and wall thickness, especially in the right heart. Most hemodynamic parameters were comparable between swine and humans. This data supports study planning, animal and device selection, reinforcing the three R principles in animal research.
期刊介绍:
Cardiovascular Ultrasound is an online journal, publishing peer-reviewed: original research; authoritative reviews; case reports on challenging and/or unusual diagnostic aspects; and expert opinions on new techniques and technologies. We are particularly interested in articles that include relevant images or video files, which provide an additional dimension to published articles and enhance understanding.
As an open access journal, Cardiovascular Ultrasound ensures high visibility for authors in addition to providing an up-to-date and freely available resource for the community. The journal welcomes discussion, and provides a forum for publishing opinion and debate ranging from biology to engineering to clinical echocardiography, with both speed and versatility.