Brewing alcohol 101: An undergraduate experiment utilizing benchtop NMR for quantification and process monitoring

IF 1.9 3区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Magnetic Resonance in Chemistry Pub Date : 2024-01-17 DOI:10.1002/mrc.5428
Amy Jenne, Ronald Soong, Katelyn Downey, Rajshree Ghosh Biswas, Venita Decker, Falko Busse, Benjamin Goerling, Agnes Haber, Myrna J. Simpson, Andre J. Simpson
{"title":"Brewing alcohol 101: An undergraduate experiment utilizing benchtop NMR for quantification and process monitoring","authors":"Amy Jenne,&nbsp;Ronald Soong,&nbsp;Katelyn Downey,&nbsp;Rajshree Ghosh Biswas,&nbsp;Venita Decker,&nbsp;Falko Busse,&nbsp;Benjamin Goerling,&nbsp;Agnes Haber,&nbsp;Myrna J. Simpson,&nbsp;Andre J. Simpson","doi":"10.1002/mrc.5428","DOIUrl":null,"url":null,"abstract":"<p>In recent years there has been a renewed interest in benchtop NMR. Given their lower cost of ownership, smaller footprint, and ease of use, they are especially suited as an educational tool. Here, a new experiment targeted at upper-year undergraduates and first-year graduate students follows the conversion of D-glucose into ethanol at low-field. First, high and low-field data on D-glucose are compared and students learn both the Hz and ppm scales and how J-coupling is field-independent. The students then acquire their own quantitative NMR datasets and perform the quantification using an Electronic Reference To Access In Vivo Concentration (ERETIC) technique. To our knowledge ERETIC is not currently taught at the undergraduate level, but has an advantage in that internal standards are not required; ideal for following processes or with future use in flow-based benchtop monitoring. Using this quantitative data, students can relate a simple chemical process (fermentation) back to more complex topics such as reaction kinetics, bridging the gaps between analytical and physical chemistry. When asked to reflect on the experiment, students had an overwhelmingly positive experience, citing agreement with learning objectives, ease of understanding the protocol, and enjoyment. Each of the respondents recommended this experiment as a learning tool for others. This experiment has been outlined for other instructors to utilize in their own courses across institutions, with the hope that a continued expansion of low-field NMR will increase accessibility and learning opportunities at the undergraduate level.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrc.5428","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrc.5428","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years there has been a renewed interest in benchtop NMR. Given their lower cost of ownership, smaller footprint, and ease of use, they are especially suited as an educational tool. Here, a new experiment targeted at upper-year undergraduates and first-year graduate students follows the conversion of D-glucose into ethanol at low-field. First, high and low-field data on D-glucose are compared and students learn both the Hz and ppm scales and how J-coupling is field-independent. The students then acquire their own quantitative NMR datasets and perform the quantification using an Electronic Reference To Access In Vivo Concentration (ERETIC) technique. To our knowledge ERETIC is not currently taught at the undergraduate level, but has an advantage in that internal standards are not required; ideal for following processes or with future use in flow-based benchtop monitoring. Using this quantitative data, students can relate a simple chemical process (fermentation) back to more complex topics such as reaction kinetics, bridging the gaps between analytical and physical chemistry. When asked to reflect on the experiment, students had an overwhelmingly positive experience, citing agreement with learning objectives, ease of understanding the protocol, and enjoyment. Each of the respondents recommended this experiment as a learning tool for others. This experiment has been outlined for other instructors to utilize in their own courses across institutions, with the hope that a continued expansion of low-field NMR will increase accessibility and learning opportunities at the undergraduate level.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酿造酒精 101:利用台式 NMR 进行定量和过程监控的本科生实验。
近年来,人们对台式 NMR 重新产生了兴趣。由于台式 NMR 的拥有成本较低、占地面积较小且易于使用,因此特别适合用作教育工具。在此,我们针对高年级本科生和一年级研究生开展了一项新实验,跟踪 D-葡萄糖在低场下转化为乙醇的过程。首先,对 D-葡萄糖的高场和低场数据进行比较,让学生了解赫兹和 ppm 尺度以及 J 耦合与场无关的原理。然后,学生们获取自己的定量 NMR 数据集,并使用电子参考获取体内浓度 (ERETIC) 技术进行定量。据我们所知,ERETIC 目前尚未在本科阶段教授,但其优点是不需要内部标准;非常适合跟踪过程或将来用于基于流动的台式监测。利用这些定量数据,学生可以将简单的化学过程(发酵)与反应动力学等更复杂的课题联系起来,从而缩小分析化学与物理化学之间的差距。当被要求对实验进行反思时,学生们的体验非常积极,他们认为实验与学习目标一致, 实验方案易于理解,而且学生们乐在其中。每个受访者都推荐将此实验作为学习工具。本实验已被概述,供其他教师在各院校的课程中使用,希望低场核磁共振的不断扩展能增加本科生的学习机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
10.00%
发文量
99
审稿时长
1 months
期刊介绍: MRC is devoted to the rapid publication of papers which are concerned with the development of magnetic resonance techniques, or in which the application of such techniques plays a pivotal part. Contributions from scientists working in all areas of NMR, ESR and NQR are invited, and papers describing applications in all branches of chemistry, structural biology and materials chemistry are published. The journal is of particular interest not only to scientists working in academic research, but also those working in commercial organisations who need to keep up-to-date with the latest practical applications of magnetic resonance techniques.
期刊最新文献
HRMAS NMR for Studying Solvent-Induced Mobility of Polymer Chains and Metallocene Migration Into Low-Density Polyethylene (LDPE). Structural Elucidation and Complete NMR Spectral Assignments of Monascus Monacolin Analogs. Issue Information Reversibly Compressible Cross-Linked Polystyrene Gels, Compatible With Toluene-d8 and Pyridine-d5, for Measurement of Residual Dipolar Couplings and Residual Chemical Shift Anisotropies. A New qNMR Compliant Savitzky-Golay Apodization Function for Resolution Enhancement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1