Michaël Koczerka, Isabelle Lantier, Marie Morillon, Justine Deperne, Camille D Clamagirand, Isabelle Virlogeux-Payant, Olivier Grépinet
{"title":"From intestine to beyond: <i>Salmonella</i> entry factors display distinct transcription pattern upon infection in murine models.","authors":"Michaël Koczerka, Isabelle Lantier, Marie Morillon, Justine Deperne, Camille D Clamagirand, Isabelle Virlogeux-Payant, Olivier Grépinet","doi":"10.1098/rsob.230312","DOIUrl":null,"url":null,"abstract":"<p><p>The infectious process of bacteria of the genus <i>Salmonella</i> requires the finely regulated use of various virulence factors. Among them, the type 3 secretion system-1 (T3SS-1) and the Rck and PagN invasins are involved in the internalization of the pathogen within eukaryotic cells, but their precise role in the host and in the pathogenic process is still poorly understood. In this study, we aimed to determine the kinetics of expression of these entry factors in a typhoid fever-like and a gastroenteritis model in mice by <i>in vivo</i> imaging using bioluminescent <i>Salmonella</i> Typhimurium reporter strains carrying chromosomal transcriptional fusions. Only <i>pagN</i> and T3SS-1 transcription has been clearly identified. Independently of the pathological model, the caecum was identified as the main transcription site of both <i>pagN</i> and the T3SS-1-encoding gene both at early and late stages of the infection. An intense transcription of <i>pagN</i> was also observed in deep organs in the typhoid fever-like model, while that of T3SS-1 remained quite sporadic in these organs, and mainly focused on the intestine all along the infection. This work will help to understand the respective role of these entry factors at the cellular level in the pathogenesis of <i>Salmonella in vivo</i>.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"14 1","pages":"230312"},"PeriodicalIF":4.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10791514/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsob.230312","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The infectious process of bacteria of the genus Salmonella requires the finely regulated use of various virulence factors. Among them, the type 3 secretion system-1 (T3SS-1) and the Rck and PagN invasins are involved in the internalization of the pathogen within eukaryotic cells, but their precise role in the host and in the pathogenic process is still poorly understood. In this study, we aimed to determine the kinetics of expression of these entry factors in a typhoid fever-like and a gastroenteritis model in mice by in vivo imaging using bioluminescent Salmonella Typhimurium reporter strains carrying chromosomal transcriptional fusions. Only pagN and T3SS-1 transcription has been clearly identified. Independently of the pathological model, the caecum was identified as the main transcription site of both pagN and the T3SS-1-encoding gene both at early and late stages of the infection. An intense transcription of pagN was also observed in deep organs in the typhoid fever-like model, while that of T3SS-1 remained quite sporadic in these organs, and mainly focused on the intestine all along the infection. This work will help to understand the respective role of these entry factors at the cellular level in the pathogenesis of Salmonella in vivo.
期刊介绍:
Open Biology is an online journal that welcomes original, high impact research in cell and developmental biology, molecular and structural biology, biochemistry, neuroscience, immunology, microbiology and genetics.