Simultaneous substrate and ubiquitin modification recognition by bispecific antibodies enables detection of ubiquitinated RIP1 and RIP2

IF 6.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Science Signaling Pub Date : 2024-01-16 DOI:10.1126/scisignal.abn1101
Tatiana Goncharov, László G. Kőműves, Matthias Kist, Erick R. Castellanos, Axel Witt, Anna V. Fedorova, Anita Izrael-Tomasevic, Kebing Yu, Mary Keir, Marissa L. Matsumoto, Domagoj Vucic
{"title":"Simultaneous substrate and ubiquitin modification recognition by bispecific antibodies enables detection of ubiquitinated RIP1 and RIP2","authors":"Tatiana Goncharov,&nbsp;László G. Kőműves,&nbsp;Matthias Kist,&nbsp;Erick R. Castellanos,&nbsp;Axel Witt,&nbsp;Anna V. Fedorova,&nbsp;Anita Izrael-Tomasevic,&nbsp;Kebing Yu,&nbsp;Mary Keir,&nbsp;Marissa L. Matsumoto,&nbsp;Domagoj Vucic","doi":"10.1126/scisignal.abn1101","DOIUrl":null,"url":null,"abstract":"<div >Ubiquitination is a posttranslational modification that is crucial for the dynamic regulation of diverse signaling pathways. To enhance our understanding of ubiquitination-mediated signaling, we generated a new class of bispecific antibodies that combine recognition of ubiquitination substrates and specific polyubiquitin linkages. RIP1-K63 and RIP1–linear (Lin) linkage polyubiquitin bispecific antibodies detected linkage-specific ubiquitination of the proinflammatory kinase RIP1 in cells and in tissues and revealed RIP1 ubiquitination by immunofluorescence. Similarly, ubiquitination of the RIP1-related kinase RIP2 with K63 or linear linkages was specifically detected with the RIP2-K63 and RIP2-Lin bispecific antibodies, respectively. Furthermore, using the RIP2-K63 and RIP2-Lin bispecific antibodies, we found prominent K63-linked and linear RIP2 ubiquitination in samples from patients with ulcerative colitis and Crohn’s disease. We also developed a bispecific antibody (K63-Lin) that simultaneously recognizes K63-linked and linear ubiquitination of components of various signaling pathways. Together, these bispecific antibodies represent a new class of reagents with the potential to be developed for the detection of inflammatory biomarkers.</div>","PeriodicalId":21658,"journal":{"name":"Science Signaling","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scisignal.abn1101","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"https://www.science.org/doi/10.1126/scisignal.abn1101","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ubiquitination is a posttranslational modification that is crucial for the dynamic regulation of diverse signaling pathways. To enhance our understanding of ubiquitination-mediated signaling, we generated a new class of bispecific antibodies that combine recognition of ubiquitination substrates and specific polyubiquitin linkages. RIP1-K63 and RIP1–linear (Lin) linkage polyubiquitin bispecific antibodies detected linkage-specific ubiquitination of the proinflammatory kinase RIP1 in cells and in tissues and revealed RIP1 ubiquitination by immunofluorescence. Similarly, ubiquitination of the RIP1-related kinase RIP2 with K63 or linear linkages was specifically detected with the RIP2-K63 and RIP2-Lin bispecific antibodies, respectively. Furthermore, using the RIP2-K63 and RIP2-Lin bispecific antibodies, we found prominent K63-linked and linear RIP2 ubiquitination in samples from patients with ulcerative colitis and Crohn’s disease. We also developed a bispecific antibody (K63-Lin) that simultaneously recognizes K63-linked and linear ubiquitination of components of various signaling pathways. Together, these bispecific antibodies represent a new class of reagents with the potential to be developed for the detection of inflammatory biomarkers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双特异性抗体可同时识别底物和泛素修饰,从而检测泛素化的 RIP1 和 RIP2。
泛素化是一种翻译后修饰,对动态调节各种信号通路至关重要。为了加深我们对泛素化介导的信号转导的了解,我们生成了一类新型的双特异性抗体,这种抗体结合了泛素化底物和特定多泛素连接的识别。RIP1-K63和RIP1-线性(Lin)连接多泛素双特异性抗体检测了细胞和组织中促炎激酶RIP1的连接特异性泛素化,并通过免疫荧光显示了RIP1泛素化。同样,RIP2-K63 和 RIP2-Lin 双特异性抗体也分别特异性地检测了与 RIP1 相关的激酶 RIP2 与 K63 或线性连接的泛素化。此外,利用 RIP2-K63 和 RIP2-Lin 双特异性抗体,我们在溃疡性结肠炎和克罗恩病患者的样本中发现了明显的 K63 链接和线性 RIP2 泛素化。我们还开发了一种双特异性抗体(K63-Lin),它能同时识别各种信号通路成分的 K63 连接泛素化和线性泛素化。这些双特异性抗体共同代表了一类新的试剂,具有开发用于检测炎症生物标志物的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Signaling
Science Signaling BIOCHEMISTRY & MOLECULAR BIOLOGY-CELL BIOLOGY
CiteScore
9.50
自引率
0.00%
发文量
148
审稿时长
3-8 weeks
期刊介绍: "Science Signaling" is a reputable, peer-reviewed journal dedicated to the exploration of cell communication mechanisms, offering a comprehensive view of the intricate processes that govern cellular regulation. This journal, published weekly online by the American Association for the Advancement of Science (AAAS), is a go-to resource for the latest research in cell signaling and its various facets. The journal's scope encompasses a broad range of topics, including the study of signaling networks, synthetic biology, systems biology, and the application of these findings in drug discovery. It also delves into the computational and modeling aspects of regulatory pathways, providing insights into how cells communicate and respond to their environment. In addition to publishing full-length articles that report on groundbreaking research, "Science Signaling" also features reviews that synthesize current knowledge in the field, focus articles that highlight specific areas of interest, and editor-written highlights that draw attention to particularly significant studies. This mix of content ensures that the journal serves as a valuable resource for both researchers and professionals looking to stay abreast of the latest advancements in cell communication science.
期刊最新文献
Engineered mini-G proteins block the internalization of cognate GPCRs and disrupt downstream intracellular signaling Insulated by opioids YAP represses the TEAD–NF-κB complex and inhibits the growth of clear cell renal cell carcinoma G protein–coupled receptor endocytosis generates spatiotemporal bias in β-arrestin signaling Palmitoylation promotes pores
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1