Self-organization in the avalanche, quench and dissipation of a molecular ultracold plasma

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Journal of Plasma Physics Pub Date : 2024-01-17 DOI:10.1017/s0022377823001472
K.L. Marroquín, R. Wang, A. Allahverdian, N. Durand-Brousseau, S. Colombini, F. Kogel, J.S. Keller, T. Langen, E.R. Grant
{"title":"Self-organization in the avalanche, quench and dissipation of a molecular ultracold plasma","authors":"K.L. Marroquín, R. Wang, A. Allahverdian, N. Durand-Brousseau, S. Colombini, F. Kogel, J.S. Keller, T. Langen, E.R. Grant","doi":"10.1017/s0022377823001472","DOIUrl":null,"url":null,"abstract":"<p>Spontaneous avalanche to plasma begins in the core of an ellipsoidal Rydberg gas of nitric oxide. Ambipolar expansion of NO<span><span><span data-mathjax-type=\"texmath\"><span>$^+$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240117100917405-0570:S0022377823001472:S0022377823001472_inline1.png\"/></span></span> draws energy from avalanche-heated electrons. Then, cycles of long-range resonant electron transfer from Rydberg molecules to ions equalize their relative velocities. This sequence of steps gives rise to a remarkable mechanics of self-assembly, in which the kinetic energy of initially formed hot electrons and ions drives an observed separation of plasma volumes. These dynamics adiabatically sequester energy in a reservoir of mass transport, starting a process that anneals separating volumes to form an apparent glass of strongly coupled ions and electrons. Short-time electron spectroscopy provides experimental evidence for complete ionization. The long lifetime of this system, particularly its stability with respect to recombination and neutral dissociation, suggests that this transformation affords a robust state of arrested relaxation, far from thermal equilibrium. We see this most directly in the excitation spectrum of transitions to states in the initially selected Rydberg series, detected as the long-lived signal that survives a flight time of <span><span><span data-mathjax-type=\"texmath\"><span>$500\\ \\mathrm {\\mu }$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240117100917405-0570:S0022377823001472:S0022377823001472_inline2.png\"/></span></span>s to reach an imaging detector. The initial density of electrons produced by prompt Penning ionization, which varies with the selected initial principal quantum number and density of the Rydberg gas, determines a balance between the rising density of ions and the falling density of Rydberg molecules. This Penning-regulated ion-Rydberg molecule balance appears necessary as a critical factor in achieving the long ultracold plasma lifetime to produce spectral features detected after very long delays.</p>","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":"8 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0022377823001472","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

Spontaneous avalanche to plasma begins in the core of an ellipsoidal Rydberg gas of nitric oxide. Ambipolar expansion of NO$^+$Abstract Image draws energy from avalanche-heated electrons. Then, cycles of long-range resonant electron transfer from Rydberg molecules to ions equalize their relative velocities. This sequence of steps gives rise to a remarkable mechanics of self-assembly, in which the kinetic energy of initially formed hot electrons and ions drives an observed separation of plasma volumes. These dynamics adiabatically sequester energy in a reservoir of mass transport, starting a process that anneals separating volumes to form an apparent glass of strongly coupled ions and electrons. Short-time electron spectroscopy provides experimental evidence for complete ionization. The long lifetime of this system, particularly its stability with respect to recombination and neutral dissociation, suggests that this transformation affords a robust state of arrested relaxation, far from thermal equilibrium. We see this most directly in the excitation spectrum of transitions to states in the initially selected Rydberg series, detected as the long-lived signal that survives a flight time of $500\ \mathrm {\mu }$Abstract Images to reach an imaging detector. The initial density of electrons produced by prompt Penning ionization, which varies with the selected initial principal quantum number and density of the Rydberg gas, determines a balance between the rising density of ions and the falling density of Rydberg molecules. This Penning-regulated ion-Rydberg molecule balance appears necessary as a critical factor in achieving the long ultracold plasma lifetime to produce spectral features detected after very long delays.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子超冷等离子体雪崩、淬火和耗散过程中的自组织现象
一氧化氮的椭圆形里德伯气体核心开始自发雪崩到等离子体。一氧化氮的极性膨胀从雪崩加热的电子中汲取能量。然后,从 Rydberg 分子到离子的长程共振电子传递循环使它们的相对速度相等。在这一系列步骤中,最初形成的热电子和离子的动能推动了等离子体体积的分离。这些动能绝热地将能量封存在一个质量传输库中,启动了一个过程,使分离的体积退火,形成一个由强耦合离子和电子组成的表面玻璃。短时电子能谱为完全电离提供了实验证据。这一系统的长寿命,特别是它在重组和中性解离方面的稳定性,表明这种转变提供了一种远离热平衡的稳健的弛豫状态。我们在最初选定的雷德贝格系列中的状态跃迁的激发光谱中最直接地看到了这一点,它作为长寿命信号被检测到,经过500 \mathrm {\mu }$s的飞行时间到达成像探测器。由潘宁迅速电离产生的电子的初始密度随所选的初始主量子数和雷德贝格气体密度的变化而变化,它决定了离子密度上升和雷德贝格分子密度下降之间的平衡。这种由潘宁调节的离子与雷德贝格分子之间的平衡似乎是实现超长超冷等离子体寿命的关键因素,从而产生在长时间延迟后检测到的光谱特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Plasma Physics
Journal of Plasma Physics 物理-物理:流体与等离子体
CiteScore
3.50
自引率
16.00%
发文量
106
审稿时长
6-12 weeks
期刊介绍: JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.
期刊最新文献
Quantized tensor networks for solving the Vlasov–Maxwell equations Nonlinear solution of classical three-wave interaction via finite-dimensional quantum model Improved axial confinement in the open trap by the combination of helical and short mirrors Spatial distribution of self-seeded air lasers induced by the femtosecond laser filament plasma Available energy of plasmas with small fluctuations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1