Transforming materials discovery for artificial photosynthesis: High-throughput screening of earth-abundant semiconductors

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, APPLIED Journal of Applied Physics Pub Date : 2024-01-16 DOI:10.1063/5.0178907
Sean M. Stafford, Alexander Aduenko, Marcus Djokic, Yu-Hsiu Lin, Jose L. Mendoza-Cortes
{"title":"Transforming materials discovery for artificial photosynthesis: High-throughput screening of earth-abundant semiconductors","authors":"Sean M. Stafford, Alexander Aduenko, Marcus Djokic, Yu-Hsiu Lin, Jose L. Mendoza-Cortes","doi":"10.1063/5.0178907","DOIUrl":null,"url":null,"abstract":"We present a highly efficient workflow for designing semiconductor structures with specific physical properties, which can be utilized for a range of applications, including photocatalytic water splitting. Our algorithm generates candidate structures composed of earth-abundant elements that exhibit optimal light-trapping, high efficiency in H2 and/or O2 production, and resistance to reduction and oxidation in aqueous media. To achieve this, we use an ionic translation model trained on the Inorganic Crystal Structure Database to predict over 30 000 undiscovered semiconductor compositions. These predictions are then screened for redox stability under hydrogen evolution reaction or oxygen evolution reaction conditions before generating thermodynamically stable crystal structures and calculating accurate bandgap values for the compounds. Our approach results in the identification of dozens of promising semiconductor candidates with ideal properties for artificial photosynthesis, offering significant advancement toward the conversion of sunlight into chemical fuels.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"18 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0178907","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We present a highly efficient workflow for designing semiconductor structures with specific physical properties, which can be utilized for a range of applications, including photocatalytic water splitting. Our algorithm generates candidate structures composed of earth-abundant elements that exhibit optimal light-trapping, high efficiency in H2 and/or O2 production, and resistance to reduction and oxidation in aqueous media. To achieve this, we use an ionic translation model trained on the Inorganic Crystal Structure Database to predict over 30 000 undiscovered semiconductor compositions. These predictions are then screened for redox stability under hydrogen evolution reaction or oxygen evolution reaction conditions before generating thermodynamically stable crystal structures and calculating accurate bandgap values for the compounds. Our approach results in the identification of dozens of promising semiconductor candidates with ideal properties for artificial photosynthesis, offering significant advancement toward the conversion of sunlight into chemical fuels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工光合作用材料发现的变革:高通量筛选地球丰富的半导体
我们提出了一种高效的工作流程,用于设计具有特定物理特性的半导体结构,这些结构可用于一系列应用,包括光催化水分离。我们的算法可生成由地球富集元素组成的候选结构,这些结构在水介质中表现出最佳的光捕获能力、高效的 H2 和/或 O2 生成能力以及抗还原和抗氧化能力。为此,我们使用在无机晶体结构数据库上训练的离子转换模型来预测 30,000 多种未被发现的半导体成分。然后,在生成热力学稳定的晶体结构和计算化合物的精确带隙值之前,对这些预测结果进行氢进化反应或氧进化反应条件下的氧化还原稳定性筛选。我们的方法最终确定了数十种具有人工光合作用理想特性的候选半导体,在将太阳光转化为化学燃料方面取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Physics
Journal of Applied Physics 物理-物理:应用
CiteScore
5.40
自引率
9.40%
发文量
1534
审稿时长
2.3 months
期刊介绍: The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research. Topics covered in JAP are diverse and reflect the most current applied physics research, including: Dielectrics, ferroelectrics, and multiferroics- Electrical discharges, plasmas, and plasma-surface interactions- Emerging, interdisciplinary, and other fields of applied physics- Magnetism, spintronics, and superconductivity- Organic-Inorganic systems, including organic electronics- Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena- Physics of devices and sensors- Physics of materials, including electrical, thermal, mechanical and other properties- Physics of matter under extreme conditions- Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena- Physics of semiconductors- Soft matter, fluids, and biophysics- Thin films, interfaces, and surfaces
期刊最新文献
Dry needling and upper cervical spinal manipulation in patients with temporomandibular disorder: A multi-center randomized clinical trial. Fast inverse design of microwave and infrared Bi-stealth metamaterials based on equivalent circuit model Calibration of Jones–Wilkins–Lee equation of state for unreacted explosives with shock Hugoniot relationship and optimization algorithm Impulse coupling enhancement of aluminum targets under laser irradiation in a soft polymer confined geometry Optimal demodulation domain for microwave SQUID multiplexers in presence of readout system noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1