Current circumstances and prospects on performance evaluation for infection control technologies of airborne viruses in indoorenvironments.

Noriko Shimasaki
{"title":"Current circumstances and prospects on performance evaluation for infection control technologies of airborne viruses in indoorenvironments.","authors":"Noriko Shimasaki","doi":"10.4265/jmc.28.4_177","DOIUrl":null,"url":null,"abstract":"<p><p>Respiratory infectious diseases have potential of aerosol transmission such as COVID-19. The development of new technologies for infection control against airborne viruses are further required. It is necessary for effective development to evaluate properly the effect and role of these technologies in indoor environment. Here, the author provided essential knowledge for infection control of viral aerosols, i.e., basic concept of infection control, features of COVID-19 and Influenza including the entry receptor in body of each virus, behavior of the viral aerosols released from patient bodies, and Wells-Riley model as a traditional quantitative assessment of the infection risk by aerosol transmission. Previous evaluation studies on airborne viruses were categorized into three types of experiments, namely, in vitro, in vivo, and in humans and real indoor environments. Some prospects were described, including standard evaluation methods for air cleaners, the research group to formulate guidelines for evaluating the hygienic effects of chemical substances on microbes in real indoor space, and personal opinions on evaluation concept linked to three types of experiments. This minireview may help to correctly evaluate the hygienic effects of control technologies against airborne viruses in indoor environment and to contribute development of technologies with required performance according to infection risk.</p>","PeriodicalId":73831,"journal":{"name":"Journal of microorganism control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microorganism control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4265/jmc.28.4_177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Respiratory infectious diseases have potential of aerosol transmission such as COVID-19. The development of new technologies for infection control against airborne viruses are further required. It is necessary for effective development to evaluate properly the effect and role of these technologies in indoor environment. Here, the author provided essential knowledge for infection control of viral aerosols, i.e., basic concept of infection control, features of COVID-19 and Influenza including the entry receptor in body of each virus, behavior of the viral aerosols released from patient bodies, and Wells-Riley model as a traditional quantitative assessment of the infection risk by aerosol transmission. Previous evaluation studies on airborne viruses were categorized into three types of experiments, namely, in vitro, in vivo, and in humans and real indoor environments. Some prospects were described, including standard evaluation methods for air cleaners, the research group to formulate guidelines for evaluating the hygienic effects of chemical substances on microbes in real indoor space, and personal opinions on evaluation concept linked to three types of experiments. This minireview may help to correctly evaluate the hygienic effects of control technologies against airborne viruses in indoor environment and to contribute development of technologies with required performance according to infection risk.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
室内环境中空气传播病毒感染控制技术性能评估的现状与前景。
呼吸道传染病有可能通过气溶胶传播,如 COVID-19。针对空气传播病毒的感染控制新技术需要进一步开发。要有效开发这些技术,就必须正确评估这些技术在室内环境中的效果和作用。在此,作者提供了病毒气溶胶感染控制的基本知识,即感染控制的基本概念、COVID-19 和流感的特征(包括每种病毒进入人体的受体)、从患者体内释放的病毒气溶胶的行为,以及作为气溶胶传播感染风险传统定量评估方法的威尔斯-瑞利模型。以往对空气传播病毒的评估研究分为三类实验,即体外实验、体内实验以及人体和真实室内环境实验。介绍了一些展望,包括空气净化器的标准评价方法、研究小组制定真实室内空间中化学物质对微生物卫生影响的评价准则,以及与三类实验相关的评价概念的个人观点。该小视图有助于正确评估室内环境中针对空气传播病毒的控制技术的卫生效果,并有助于根据感染风险开发具有所需性能的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An experimental verification of fungal overgrowth in temporary houses at the site of the Great East Japan Earthquake. Distribution of Staphylococcus aureus carriage among healthcare workers in a Japanese convalescent and rehabilitation hospital. Ethambutol inhibited the growth of acid-fast bacteria and enhanced the detection of Legionella in environmental water samples. External quality control survey on identification of microorganisms using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Heparinoid enhances the efficacy of a bactericidal agent by preventing Cutibacterium acnes biofilm formation via quorum sensing inhibition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1