Survey, classification and critical analysis of the literature on corporate bankruptcy and financial distress prediction

Jinxian Zhao , Jamal Ouenniche , Johannes De Smedt
{"title":"Survey, classification and critical analysis of the literature on corporate bankruptcy and financial distress prediction","authors":"Jinxian Zhao ,&nbsp;Jamal Ouenniche ,&nbsp;Johannes De Smedt","doi":"10.1016/j.mlwa.2024.100527","DOIUrl":null,"url":null,"abstract":"<div><p>Corporate bankruptcy and financial distress prediction is a topic of interest for a variety of stakeholders, including businesses, financial institutions, investors, regulatory bodies, auditors, and academics. Various statistical and artificial intelligence methodologies have been devised to produce more accurate predictions. As more researchers are now focusing on this growing field of interest, this paper provides an up-to-date comprehensive survey, classification, and critical analysis of the literature on corporate bankruptcy and financial distress predictions, including definitions of bankruptcy and financial distress, prediction methodologies and models, data pre-processing, feature selection, model implementation, performance criteria and their measures for assessing the performance of classifiers or prediction models, and methodologies for the performance evaluation of prediction models. Finally, a critical analysis of the surveyed literature is provided to inspire possible future research directions.</p></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"15 ","pages":"Article 100527"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666827024000033/pdfft?md5=92a0a4f22c8d9ab4a70836323e00be27&pid=1-s2.0-S2666827024000033-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827024000033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Corporate bankruptcy and financial distress prediction is a topic of interest for a variety of stakeholders, including businesses, financial institutions, investors, regulatory bodies, auditors, and academics. Various statistical and artificial intelligence methodologies have been devised to produce more accurate predictions. As more researchers are now focusing on this growing field of interest, this paper provides an up-to-date comprehensive survey, classification, and critical analysis of the literature on corporate bankruptcy and financial distress predictions, including definitions of bankruptcy and financial distress, prediction methodologies and models, data pre-processing, feature selection, model implementation, performance criteria and their measures for assessing the performance of classifiers or prediction models, and methodologies for the performance evaluation of prediction models. Finally, a critical analysis of the surveyed literature is provided to inspire possible future research directions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
企业破产和财务困境预测文献的调查、分类和批判性分析
企业破产和财务困境预测是企业、金融机构、投资者、监管机构、审计师和学术界等各利益相关方都感兴趣的话题。为了做出更准确的预测,人们设计了各种统计和人工智能方法。随着越来越多的研究人员开始关注这一日益增长的领域,本文对有关企业破产和财务困境预测的文献进行了最新的全面调查、分类和批判性分析,包括破产和财务困境的定义、预测方法和模型、数据预处理、特征选择、模型实现、评估分类器或预测模型性能的性能标准及其测量方法,以及预测模型性能评估的方法。最后,对所调查的文献进行了批判性分析,以启发未来可能的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
期刊最新文献
Document Layout Error Rate (DLER) metric to evaluate image segmentation methods Supervised machine learning for microbiomics: Bridging the gap between current and best practices Playing with words: Comparing the vocabulary and lexical diversity of ChatGPT and humans A survey on knowledge distillation: Recent advancements Texas rural land market integration: A causal analysis using machine learning applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1