Chitosan and its derivatives as promising plant protection tools.

IF 0.9 Q3 AGRICULTURE, MULTIDISCIPLINARY Vavilovskii Zhurnal Genetiki i Selektsii Pub Date : 2023-12-01 DOI:10.18699/VJGB-23-116
A B Shcherban
{"title":"Chitosan and its derivatives as promising plant protection tools.","authors":"A B Shcherban","doi":"10.18699/VJGB-23-116","DOIUrl":null,"url":null,"abstract":"<p><p>In modern conditions, the increase in the yield of agricultural crops is provided not by expanding the areas of their cultivation, but mainly by introducing advanced technologies. The most effective strategy for this purpose is the development of genetically resistant and productive cultivars in combination with the use of a variety of plant protection products (PPPs). However, traditional, chemical PPPs, despite their effectiveness, have significant drawbacks, namely, pollution of environment, ecological damage, toxicity to humans. Recently, biological PPPs based on natural compounds have attracted more attention, since they do not have these disadvantages, but at the same time they can be no less effective. One of such agents is chitosan, a deacetylation product of chitin, one of the most common polysaccharides in nature. The high biological activity, biocompatibility, and safety of chitosan determine the breadth and effectiveness of its use in medicine, industry, and agrobiology. The review considers various mechanisms of action of chitosan as a biopesticide, including both a direct inhibitory effect on pathogens and the induction of plant internal defense systems as a result of chitosan binding to cell surface receptors. The effect of chitosan on the formation of resistance to the main classes of pathogens: fungi, bacteria, and viruses has been shown on a variety of plant objects. The review also discusses various ways of using chitosan: for the treatment of seeds, leaves, fruits, soil, as well as its specific biological effects corresponding to these ways. A separate chapter is devoted to protection products based on chitosan, obtained by its chemical modifications, or by means of combining of a certain molecular forms of chitosan with various substances that enhance its antipathogenic effect. The data presented in the review generally give an idea of chitosan and its derivatives as very effective and promising plant protection products and biostimulants.</p>","PeriodicalId":44339,"journal":{"name":"Vavilovskii Zhurnal Genetiki i Selektsii","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10792498/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vavilovskii Zhurnal Genetiki i Selektsii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18699/VJGB-23-116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In modern conditions, the increase in the yield of agricultural crops is provided not by expanding the areas of their cultivation, but mainly by introducing advanced technologies. The most effective strategy for this purpose is the development of genetically resistant and productive cultivars in combination with the use of a variety of plant protection products (PPPs). However, traditional, chemical PPPs, despite their effectiveness, have significant drawbacks, namely, pollution of environment, ecological damage, toxicity to humans. Recently, biological PPPs based on natural compounds have attracted more attention, since they do not have these disadvantages, but at the same time they can be no less effective. One of such agents is chitosan, a deacetylation product of chitin, one of the most common polysaccharides in nature. The high biological activity, biocompatibility, and safety of chitosan determine the breadth and effectiveness of its use in medicine, industry, and agrobiology. The review considers various mechanisms of action of chitosan as a biopesticide, including both a direct inhibitory effect on pathogens and the induction of plant internal defense systems as a result of chitosan binding to cell surface receptors. The effect of chitosan on the formation of resistance to the main classes of pathogens: fungi, bacteria, and viruses has been shown on a variety of plant objects. The review also discusses various ways of using chitosan: for the treatment of seeds, leaves, fruits, soil, as well as its specific biological effects corresponding to these ways. A separate chapter is devoted to protection products based on chitosan, obtained by its chemical modifications, or by means of combining of a certain molecular forms of chitosan with various substances that enhance its antipathogenic effect. The data presented in the review generally give an idea of chitosan and its derivatives as very effective and promising plant protection products and biostimulants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
壳聚糖及其衍生物是前景广阔的植物保护工具。
在现代条件下,农作物的增产不是靠扩大种植面积,而是主要靠引进先进技术。为此,最有效的策略是结合使用各种植物保护产品(PPPs),开发具有抗性和高产的基因栽培品种。然而,传统的化学植保产品尽管有效,但也有很大的缺点,即污染环境、破坏生态、对人体有毒。最近,以天然化合物为基础的生物 PPP 引起了更多的关注,因为它们没有这些缺点,同时效果也不差。壳聚糖就是其中一种,它是几丁质的脱乙酰化产物,是自然界中最常见的多糖之一。壳聚糖的高生物活性、生物相容性和安全性决定了它在医学、工业和农业生物学中应用的广泛性和有效性。本综述探讨了壳聚糖作为生物农药的各种作用机制,包括对病原体的直接抑制作用,以及壳聚糖与细胞表面受体结合后诱导植物内部防御系统的作用。壳聚糖对主要几类病原体(真菌、细菌和病毒)形成抗性的作用已在多种植物对象上得到证实。综述还讨论了壳聚糖的各种使用方法:用于处理种子、叶片、果实和土壤,以及与这些方法相对应的特定生物效应。另有一章专门介绍基于壳聚糖的保护产品,这些产品是通过对壳聚糖进行化学改性,或通过将壳聚糖的特定分子形式与各种物质结合以增强其抗病作用而获得的。从综述中提供的数据可以大致看出,壳聚糖及其衍生物是非常有效且前景广阔的植物保护产品和生物刺激剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Vavilovskii Zhurnal Genetiki i Selektsii
Vavilovskii Zhurnal Genetiki i Selektsii AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
0.00%
发文量
119
审稿时长
8 weeks
期刊介绍: The "Vavilov Journal of genetics and breeding" publishes original research and review articles in all key areas of modern plant, animal and human genetics, genomics, bioinformatics and biotechnology. One of the main objectives of the journal is integration of theoretical and applied research in the field of genetics. Special attention is paid to the most topical areas in modern genetics dealing with global concerns such as food security and human health.
期刊最新文献
Search for signals of positive selection of circadian rhythm genes PER1, PER2, PER3 in different human populations. Structure and evolution of metapolycentromeres. The effect of T. aestivum chromosomes 1A and 1D on fertility of alloplasmic recombinant (H. vulgare)-T. aestivum lines depending on cytonuclear compatibility. Traces of Paleolithic expansion in the Nivkh gene pool based on data on autosomal SNP and Y chromosome polymorphism. A new leaf pubescence gene, Hl1th , introgressed into bread wheat from Thinopyrum ponticum and its phenotypic manifestation under homoeologous chromosomal substitutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1