{"title":"Islet amyloid polypeptide tagged with green fluorescent protein localises to mitochondria and forms filamentous aggregates in Caenorhabditis elegans","authors":"Mehmet Akdag, Vera van Schijndel, Tessa Sinnige","doi":"10.1016/j.bpc.2024.107180","DOIUrl":null,"url":null,"abstract":"<div><p>Type 2 diabetes (T2D) is the most common form of diabetes and represents a growing health concern. A characteristic feature of T2D is the aggregation of islet amyloid polypeptide (IAPP), which is thought to be associated with the death of pancreatic β-cells. Inhibiting IAPP aggregation is a promising therapeutic avenue to treat T2D, but the mechanisms of aggregation and toxicity are not yet fully understood. <em>Caenorhabditis elegans</em> is a well-characterised multicellular model organism that has been extensively used to study protein aggregation diseases. In this study, we aimed to develop a simple <em>in vivo</em> model to investigate IAPP aggregation and toxicity based on expression in the <em>C. elegans</em> body wall muscle cells. We show that IAPP tagged with green fluorescent protein (GFP) localises to mitochondria not only in muscle cells but also when expressed in the intestine, in line with previous observations in mouse and human pancreatic β-cells. The IAPP-GFP fusion protein forms solid aggregates, which have a filamentous appearance as seen by electron microscopy. However, the animals expressing IAPP-GFP in the body wall muscle cells do not display a strong motility phenotype, suggesting that the IAPP-GFP aggregates are not considerably toxic. Nevertheless, the mitochondrial localisation and aggregate formation may be useful read-outs to screen for IAPP-solubilizing compounds as a therapeutic strategy for T2D.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"307 ","pages":"Article 107180"},"PeriodicalIF":3.3000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301462224000097/pdfft?md5=01b619bad69be902ca86d372a971abd5&pid=1-s2.0-S0301462224000097-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462224000097","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Type 2 diabetes (T2D) is the most common form of diabetes and represents a growing health concern. A characteristic feature of T2D is the aggregation of islet amyloid polypeptide (IAPP), which is thought to be associated with the death of pancreatic β-cells. Inhibiting IAPP aggregation is a promising therapeutic avenue to treat T2D, but the mechanisms of aggregation and toxicity are not yet fully understood. Caenorhabditis elegans is a well-characterised multicellular model organism that has been extensively used to study protein aggregation diseases. In this study, we aimed to develop a simple in vivo model to investigate IAPP aggregation and toxicity based on expression in the C. elegans body wall muscle cells. We show that IAPP tagged with green fluorescent protein (GFP) localises to mitochondria not only in muscle cells but also when expressed in the intestine, in line with previous observations in mouse and human pancreatic β-cells. The IAPP-GFP fusion protein forms solid aggregates, which have a filamentous appearance as seen by electron microscopy. However, the animals expressing IAPP-GFP in the body wall muscle cells do not display a strong motility phenotype, suggesting that the IAPP-GFP aggregates are not considerably toxic. Nevertheless, the mitochondrial localisation and aggregate formation may be useful read-outs to screen for IAPP-solubilizing compounds as a therapeutic strategy for T2D.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.