Descent Properties of an Anderson Accelerated Gradient Method with Restarting

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED SIAM Journal on Optimization Pub Date : 2024-01-19 DOI:10.1137/22m151460x
Wenqing Ouyang, Yang Liu, Andre Milzarek
{"title":"Descent Properties of an Anderson Accelerated Gradient Method with Restarting","authors":"Wenqing Ouyang, Yang Liu, Andre Milzarek","doi":"10.1137/22m151460x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 1, Page 336-365, March 2024. <br/> Abstract. Anderson acceleration ([math]) is a popular acceleration technique to enhance the convergence of fixed-point schemes. The analysis of [math] approaches often focuses on the convergence behavior of a corresponding fixed-point residual, while the behavior of the underlying objective function values along the accelerated iterates is currently not well understood. In this paper, we investigate local properties of [math] with restarting applied to a basic gradient scheme ([math]) in terms of function values. Specifically, we show that [math] is a local descent method and that it can decrease the objective function at a rate no slower than the gradient method up to higher-order error terms. These new results theoretically support the good numerical performance of [math] when heuristic descent conditions are used for globalization and they provide a novel perspective on the convergence analysis of [math] that is more amenable to nonconvex optimization problems. Numerical experiments are conducted to illustrate our theoretical findings.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":"3 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m151460x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Optimization, Volume 34, Issue 1, Page 336-365, March 2024.
Abstract. Anderson acceleration ([math]) is a popular acceleration technique to enhance the convergence of fixed-point schemes. The analysis of [math] approaches often focuses on the convergence behavior of a corresponding fixed-point residual, while the behavior of the underlying objective function values along the accelerated iterates is currently not well understood. In this paper, we investigate local properties of [math] with restarting applied to a basic gradient scheme ([math]) in terms of function values. Specifically, we show that [math] is a local descent method and that it can decrease the objective function at a rate no slower than the gradient method up to higher-order error terms. These new results theoretically support the good numerical performance of [math] when heuristic descent conditions are used for globalization and they provide a novel perspective on the convergence analysis of [math] that is more amenable to nonconvex optimization problems. Numerical experiments are conducted to illustrate our theoretical findings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带重启的安德森加速梯度法的下降特性
SIAM 优化期刊》,第 34 卷,第 1 期,第 336-365 页,2024 年 3 月。 摘要安德森加速([math])是一种流行的加速技术,用于提高定点方案的收敛性。对[math]方法的分析通常集中在相应定点残差的收敛行为上,而对加速迭代过程中基本目标函数值的行为目前还不甚了解。在本文中,我们从函数值的角度研究了应用于基本梯度方案([math])的[math]重启的局部特性。具体来说,我们证明了 [math] 是一种局部下降方法,它能以不慢于梯度方法的速度减少目标函数,直至高阶误差项。这些新结果从理论上支持了[math]在使用启发式下降条件进行全局化时的良好数值性能,并为[math]的收敛分析提供了一个新的视角,更适合于非凸优化问题。我们进行了数值实验来说明我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
期刊最新文献
Corrigendum and Addendum: Newton Differentiability of Convex Functions in Normed Spaces and of a Class of Operators Newton-Based Alternating Methods for the Ground State of a Class of Multicomponent Bose–Einstein Condensates Minimum Spanning Trees in Infinite Graphs: Theory and Algorithms On Minimal Extended Representations of Generalized Power Cones A Functional Model Method for Nonconvex Nonsmooth Conditional Stochastic Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1