Flexural Performance of Prefabricated Composite Girders along with Precast Deck-to-Girder Continuous Connections

IF 1.1 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY International Journal of Steel Structures Pub Date : 2024-01-17 DOI:10.1007/s13296-023-00802-7
Byung H. Choi, Hung Thanh Diep, Jiho Moon
{"title":"Flexural Performance of Prefabricated Composite Girders along with Precast Deck-to-Girder Continuous Connections","authors":"Byung H. Choi, Hung Thanh Diep, Jiho Moon","doi":"10.1007/s13296-023-00802-7","DOIUrl":null,"url":null,"abstract":"<p>Recently, a great amount of research has been carried out to resolve a growing need for durable and resilient highway bridge construction/reconstruction systems in many countries. As a part of such studies, prefabricated composite girders with innovative precast deck-to-girder continuous connections have been proposed that facilitate construction by eliminating interference during on-site processes. This study aims to figure out the effects on the flexural performance of the prefabricated composite girders along with the non-interference deployment of the precast deck-to-girder interface connections. In this study, two test specimens of the prefabricated composite girder were designed. Ultimate bending tests were conducted to experimentally evaluate the behavior of shear interfaces and flexural performances of the test specimen girders. It was revealed from this study that the intersection of the lap connection between the transverse deck reinforcement and the shear connectors will have a significant effect on the flexural performance of the prefabricated composite girder. The flexural performance of the prefabricated composite girder with intersected connection type is ensured while the non-intersected connection type influences the flexural performance more seriously than the intersected connection type. The AASHTO LRFD specifications appears applicable to the existing intersected connection details. Further, a series of parametric studies based on the verified finite element model were performed to examine the influence of various dominant factors on the flexural moment strength of the prefabricated composite girder. From the results of parametric studies, conclusions were drawn. The results of this study could be used for future research to establish a procedure for evaluating the bending resistance capacity of prefabricated composite girders based on structural ductility through rotating capacity.</p>","PeriodicalId":596,"journal":{"name":"International Journal of Steel Structures","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Steel Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13296-023-00802-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, a great amount of research has been carried out to resolve a growing need for durable and resilient highway bridge construction/reconstruction systems in many countries. As a part of such studies, prefabricated composite girders with innovative precast deck-to-girder continuous connections have been proposed that facilitate construction by eliminating interference during on-site processes. This study aims to figure out the effects on the flexural performance of the prefabricated composite girders along with the non-interference deployment of the precast deck-to-girder interface connections. In this study, two test specimens of the prefabricated composite girder were designed. Ultimate bending tests were conducted to experimentally evaluate the behavior of shear interfaces and flexural performances of the test specimen girders. It was revealed from this study that the intersection of the lap connection between the transverse deck reinforcement and the shear connectors will have a significant effect on the flexural performance of the prefabricated composite girder. The flexural performance of the prefabricated composite girder with intersected connection type is ensured while the non-intersected connection type influences the flexural performance more seriously than the intersected connection type. The AASHTO LRFD specifications appears applicable to the existing intersected connection details. Further, a series of parametric studies based on the verified finite element model were performed to examine the influence of various dominant factors on the flexural moment strength of the prefabricated composite girder. From the results of parametric studies, conclusions were drawn. The results of this study could be used for future research to establish a procedure for evaluating the bending resistance capacity of prefabricated composite girders based on structural ductility through rotating capacity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预制复合梁的挠曲性能以及预制梁板与梁板的连续连接
最近,许多国家开展了大量研究,以满足对耐用、有弹性的公路桥梁建造/重建系统日益增长的需求。作为这些研究的一部分,人们提出了采用创新的预制桥面与梁板连续连接的预制复合梁,通过消除现场过程中的干扰来促进施工。本研究旨在找出预制复合材料梁的抗弯性能与预制桥面与梁界面连接的无干扰部署的影响。在这项研究中,设计了两个预制复合梁的测试样本。通过极限弯曲试验,对试样梁的剪切界面行为和弯曲性能进行了实验评估。研究结果表明,横向桥面钢筋与剪力连接器之间的搭接连接交点会对预制复合梁的抗弯性能产生显著影响。采用相交连接方式的预制复合梁的抗弯性能得到了保证,而非相交连接方式对抗弯性能的影响比相交连接方式更为严重。AASHTO LRFD 规范似乎适用于现有的相交连接细节。此外,还根据验证过的有限元模型进行了一系列参数研究,以考察各种主导因素对预制复合梁抗弯矩强度的影响。根据参数研究的结果得出了结论。这项研究的结果可用于今后的研究,以建立一套程序,通过旋转能力评估基于结构延性的预制复合梁的抗弯能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Steel Structures
International Journal of Steel Structures 工程技术-工程:土木
CiteScore
2.70
自引率
13.30%
发文量
122
审稿时长
12 months
期刊介绍: The International Journal of Steel Structures provides an international forum for a broad classification of technical papers in steel structural research and its applications. The journal aims to reach not only researchers, but also practicing engineers. Coverage encompasses such topics as stability, fatigue, non-linear behavior, dynamics, reliability, fire, design codes, computer-aided analysis and design, optimization, expert systems, connections, fabrications, maintenance, bridges, off-shore structures, jetties, stadiums, transmission towers, marine vessels, storage tanks, pressure vessels, aerospace, and pipelines and more.
期刊最新文献
Numerical Analysis of Sectional Defective Steel Tube Repaired Using Multilayered CFRP Bonding Subjected to Axial Force or Bending Average Compressive Stress–Strain Curves of Steel Plates for Bridges Under Axial Longitudinal Compression Experimental and Numerical Study on Behaviors of Double-shear Four-Bolted Connection with Austenitic Stainless Steel Flexural Analysis of Elastically Supported Bidirectional Monel–Zirconia Skew FGM Plate Subjected to Line Load Using Meshless Collocation Technique Investigation of the Fracture Behavior of High-Strength Structural Steel and Welds based on Micromechanical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1