Localized Orthogonal Decomposition for a Multiscale Parabolic Stochastic Partial Differential Equation

Annika Lang, Per Ljung, Axel Målqvist
{"title":"Localized Orthogonal Decomposition for a Multiscale Parabolic Stochastic Partial Differential Equation","authors":"Annika Lang, Per Ljung, Axel Målqvist","doi":"10.1137/23m1569216","DOIUrl":null,"url":null,"abstract":"Multiscale Modeling &amp;Simulation, Volume 22, Issue 1, Page 204-229, March 2024. <br/> Abstract. A multiscale method is proposed for a parabolic stochastic partial differential equation with additive noise and highly oscillatory diffusion. The framework is based on the localized orthogonal decomposition (LOD) method and computes a coarse-scale representation of the elliptic operator, enriched by fine-scale information on the diffusion. Optimal order strong convergence is derived. The LOD technique is combined with a (multilevel) Monte Carlo estimator and the weak error is analyzed. Numerical examples that confirm the theoretical findings are provided, and the computational efficiency of the method is highlighted.","PeriodicalId":501053,"journal":{"name":"Multiscale Modeling and Simulation","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/23m1569216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiscale Modeling &Simulation, Volume 22, Issue 1, Page 204-229, March 2024.
Abstract. A multiscale method is proposed for a parabolic stochastic partial differential equation with additive noise and highly oscillatory diffusion. The framework is based on the localized orthogonal decomposition (LOD) method and computes a coarse-scale representation of the elliptic operator, enriched by fine-scale information on the diffusion. Optimal order strong convergence is derived. The LOD technique is combined with a (multilevel) Monte Carlo estimator and the weak error is analyzed. Numerical examples that confirm the theoretical findings are provided, and the computational efficiency of the method is highlighted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多尺度抛物线随机偏微分方程的局部正交分解
多尺度建模与仿真》,第 22 卷第 1 期,第 204-229 页,2024 年 3 月。 摘要。针对具有加性噪声和高度振荡扩散的抛物线随机偏微分方程,提出了一种多尺度方法。该框架以局部正交分解(LOD)方法为基础,计算椭圆算子的粗尺度表示,并用扩散的细尺度信息加以丰富。推导出了最佳阶强收敛性。LOD 技术与(多级)蒙特卡罗估计器相结合,并对弱误差进行了分析。提供的数值示例证实了理论结论,并强调了该方法的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Kinetic Description of Swarming Dynamics with Topological Interaction and Transient Leaders High-Frequency Homogenization for Periodic Dispersive Media Multiscale Approach for Variational Problem Joint Diffeomorphic Image Registration and Intensity Correction: Theory and Application Homogenization of a Porous Intercalation Electrode with Phase Separation Quantum Algorithms for Multiscale Partial Differential Equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1