{"title":"Properties of the reconciled distributions for Gaussian and count forecasts","authors":"","doi":"10.1016/j.ijforecast.2023.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>Reconciliation enforces coherence between hierarchical forecasts, in order to satisfy a set of linear constraints. While most works focus on the reconciliation of point forecasts, we consider probabilistic reconciliation and we analyze the properties of distributions reconciled via conditioning. We provide a formal analysis of the variance of the reconciled distribution, treating the case of Gaussian and count forecasts separately. We also study the reconciled upper mean in the case of one-level hierarchies, again treating Gaussian and count forecasts separately. We then show experiments on the reconciliation of intermittent time series related to the count of extreme market events. The experiments confirm our theoretical results and show that reconciliation largely improves the performance of probabilistic forecasting.</p></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"40 4","pages":"Pages 1438-1448"},"PeriodicalIF":6.9000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016920702300136X/pdfft?md5=9e8e80067e02ac1e611fc1ae1e5aec76&pid=1-s2.0-S016920702300136X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016920702300136X","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Reconciliation enforces coherence between hierarchical forecasts, in order to satisfy a set of linear constraints. While most works focus on the reconciliation of point forecasts, we consider probabilistic reconciliation and we analyze the properties of distributions reconciled via conditioning. We provide a formal analysis of the variance of the reconciled distribution, treating the case of Gaussian and count forecasts separately. We also study the reconciled upper mean in the case of one-level hierarchies, again treating Gaussian and count forecasts separately. We then show experiments on the reconciliation of intermittent time series related to the count of extreme market events. The experiments confirm our theoretical results and show that reconciliation largely improves the performance of probabilistic forecasting.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.