I. O. Hnatenko, I. V. Andreiev, S. O. Lysovenko, O. S. Roik, O. S. Osipov, T. O. Kosenchuk
{"title":"Influence of Temperature in Barothermal Treatment of Sintered Cemented Carbides on the Evolution of Their Structure and Properties","authors":"I. O. Hnatenko, I. V. Andreiev, S. O. Lysovenko, O. S. Roik, O. S. Osipov, T. O. Kosenchuk","doi":"10.3103/S1063457623060047","DOIUrl":null,"url":null,"abstract":"<p>We investigated the effect of barothermal treatment at a pressure of 8 GPa and temperatures of 1450–1700°C on the structure and properties of cemented carbides with varying cobalt concentrations. The application of barothermal treatment led to a 30% increase in the grain size of the carbide phase and a decrease in overall porosity. For WC–6Co alloys treated under conditions of solid-phase sintering, an increase in hardness and the stress intensity factor are observed. The barothermal treatment of WC–15Co alloys at temperatures corresponding to the existence of a liquid phase leads to the formation of Co<sub>3</sub>W<sub>3</sub>C intermetallic phases.</p>","PeriodicalId":670,"journal":{"name":"Journal of Superhard Materials","volume":"45 6","pages":"444 - 450"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superhard Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.3103/S1063457623060047","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated the effect of barothermal treatment at a pressure of 8 GPa and temperatures of 1450–1700°C on the structure and properties of cemented carbides with varying cobalt concentrations. The application of barothermal treatment led to a 30% increase in the grain size of the carbide phase and a decrease in overall porosity. For WC–6Co alloys treated under conditions of solid-phase sintering, an increase in hardness and the stress intensity factor are observed. The barothermal treatment of WC–15Co alloys at temperatures corresponding to the existence of a liquid phase leads to the formation of Co3W3C intermetallic phases.
期刊介绍:
Journal of Superhard Materials presents up-to-date results of basic and applied research on production, properties, and applications of superhard materials and related tools. It publishes the results of fundamental research on physicochemical processes of forming and growth of single-crystal, polycrystalline, and dispersed materials, diamond and diamond-like films; developments of methods for spontaneous and controlled synthesis of superhard materials and methods for static, explosive and epitaxial synthesis. The focus of the journal is large single crystals of synthetic diamonds; elite grinding powders and micron powders of synthetic diamonds and cubic boron nitride; polycrystalline and composite superhard materials based on diamond and cubic boron nitride; diamond and carbide tools for highly efficient metal-working, boring, stone-working, coal mining and geological exploration; articles of ceramic; polishing pastes for high-precision optics; precision lathes for diamond turning; technologies of precise machining of metals, glass, and ceramics. The journal covers all fundamental and technological aspects of synthesis, characterization, properties, devices and applications of these materials. The journal welcomes manuscripts from all countries in the English language.