A LAPACK implementation of the Dynamic Mode Decomposition

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Mathematical Software Pub Date : 2024-01-19 DOI:10.1145/3640012
Zlatko Drmač
{"title":"A LAPACK implementation of the Dynamic Mode Decomposition","authors":"Zlatko Drmač","doi":"10.1145/3640012","DOIUrl":null,"url":null,"abstract":"<p>The Dynamic Mode Decomposition (DMD) is a method for computational analysis of nonlinear dynamical systems in data driven scenarios. Based on high fidelity numerical simulations or experimental data, the DMD can be used to reveal the latent structures in the dynamics or as a forecasting or a model order reduction tool. The theoretical underpinning of the DMD is the Koopman operator on a Hilbert space of observables of the dynamics under study. This paper describes a numerically robust and versatile variant of the DMD and its implementation using the state of the art dense numerical linear algebra software package <sans-serif>LAPACK</sans-serif>. The features of the proposed software solution include residual bounds for the computed eigenpairs of the DMD matrix, eigenvectors refinements and computation of the eigenvectors of the Exact DMD, compressed DMD for efficient analysis of high dimensional problems that can be easily adapted for fast updates in a streaming DMD. Numerical analysis is the bedrock of numerical robustness and reliability of the software, that is tested following the highest standards and practices of <sans-serif>LAPACK</sans-serif>. Important numerical topics are discussed in detail and illustrated using numerous numerical examples.</p>","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"12 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3640012","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The Dynamic Mode Decomposition (DMD) is a method for computational analysis of nonlinear dynamical systems in data driven scenarios. Based on high fidelity numerical simulations or experimental data, the DMD can be used to reveal the latent structures in the dynamics or as a forecasting or a model order reduction tool. The theoretical underpinning of the DMD is the Koopman operator on a Hilbert space of observables of the dynamics under study. This paper describes a numerically robust and versatile variant of the DMD and its implementation using the state of the art dense numerical linear algebra software package LAPACK. The features of the proposed software solution include residual bounds for the computed eigenpairs of the DMD matrix, eigenvectors refinements and computation of the eigenvectors of the Exact DMD, compressed DMD for efficient analysis of high dimensional problems that can be easily adapted for fast updates in a streaming DMD. Numerical analysis is the bedrock of numerical robustness and reliability of the software, that is tested following the highest standards and practices of LAPACK. Important numerical topics are discussed in detail and illustrated using numerous numerical examples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态模式分解的 LAPACK 实现
动态模式分解(DMD)是一种在数据驱动情况下对非线性动力系统进行计算分析的方法。基于高保真数值模拟或实验数据,DMD 可用于揭示动力学中的潜在结构,或作为预测或模型阶次缩减工具。DMD 的理论基础是所研究动态观测值的希尔伯特空间上的库普曼算子。本文介绍了 DMD 在数值上的稳健性和通用性,以及使用最先进的密集数值线性代数软件包 LAPACK 对其进行的实现。该软件解决方案的特点包括 DMD 矩阵特征对计算的残差边界、特征向量细化和精确 DMD 的特征向量计算、用于高效分析高维问题的压缩 DMD(可轻松适应流式 DMD 的快速更新)。数值分析是该软件数值稳健性和可靠性的基石,其测试遵循 LAPACK 的最高标准和惯例。软件详细讨论了重要的数值主题,并使用大量数值示例进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software 工程技术-计算机:软件工程
CiteScore
5.00
自引率
3.70%
发文量
50
审稿时长
>12 weeks
期刊介绍: As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.
期刊最新文献
Algorithm xxx: A Covariate-Dependent Approach to Gaussian Graphical Modeling in R Remark on Algorithm 1012: Computing projections with large data sets PyOED: An Extensible Suite for Data Assimilation and Model-Constrained Optimal Design of Experiments Avoiding breakdown in incomplete factorizations in low precision arithmetic Algorithm xxx: PyGenStability, a multiscale community detection with generalized Markov Stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1