Steady-state statistical properties and implementation of randomization designs with maximum tolerated imbalance restriction for two-arm equal allocation clinical trials.
{"title":"Steady-state statistical properties and implementation of randomization designs with maximum tolerated imbalance restriction for two-arm equal allocation clinical trials.","authors":"Wenle Zhao, Kerstine Carter, Oleksandr Sverdlov, Annika Scheffold, Yevgen Ryeznik, Christy Cassarly, Vance W Berger","doi":"10.1002/sim.10013","DOIUrl":null,"url":null,"abstract":"<p><p>In recent decades, several randomization designs have been proposed in the literature as better alternatives to the traditional permuted block design (PBD), providing higher allocation randomness under the same restriction of the maximum tolerated imbalance (MTI). However, PBD remains the most frequently used method for randomizing subjects in clinical trials. This status quo may reflect an inadequate awareness and appreciation of the statistical properties of these randomization designs, and a lack of simple methods for their implementation. This manuscript presents the analytic results of statistical properties for five randomization designs with MTI restriction based on their steady-state probabilities of the treatment imbalance Markov chain and compares them to those of the PBD. A unified framework for randomization sequence generation and real-time on-demand treatment assignment is proposed for the straightforward implementation of randomization algorithms with explicit formulas of conditional allocation probabilities. Topics associated with the evaluation, selection, and implementation of randomization designs are discussed. It is concluded that for two-arm equal allocation trials, several randomization designs offer stronger protection against selection bias than the PBD does, and their implementation is not necessarily more difficult than the implementation of the PBD.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":"1194-1212"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10925840/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10013","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent decades, several randomization designs have been proposed in the literature as better alternatives to the traditional permuted block design (PBD), providing higher allocation randomness under the same restriction of the maximum tolerated imbalance (MTI). However, PBD remains the most frequently used method for randomizing subjects in clinical trials. This status quo may reflect an inadequate awareness and appreciation of the statistical properties of these randomization designs, and a lack of simple methods for their implementation. This manuscript presents the analytic results of statistical properties for five randomization designs with MTI restriction based on their steady-state probabilities of the treatment imbalance Markov chain and compares them to those of the PBD. A unified framework for randomization sequence generation and real-time on-demand treatment assignment is proposed for the straightforward implementation of randomization algorithms with explicit formulas of conditional allocation probabilities. Topics associated with the evaluation, selection, and implementation of randomization designs are discussed. It is concluded that for two-arm equal allocation trials, several randomization designs offer stronger protection against selection bias than the PBD does, and their implementation is not necessarily more difficult than the implementation of the PBD.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.