{"title":"The stimulus-driven and representation-driven cross-modal attentional spreading are both modulated by audiovisual temporal synchrony.","authors":"Song Zhao, Fangfang Ma, Jimei Xie, Yuxin Zhou, Chengzhi Feng, Wenfeng Feng","doi":"10.1111/psyp.14527","DOIUrl":null,"url":null,"abstract":"<p><p>Multisensory integration and attention can interact in a way that attention to the visual constituent of a multisensory object results in an attentional spreading to its ignored auditory constituent, which can be either stimulus-driven or representation-driven depending on whether the object's visual constituent receives extra representation-based selective attention. Previous research using simple unrelated audiovisual combinations has shown that the stimulus-driven attentional spreading is contingent on audiovisual temporal simultaneity. However, little is known about whether this temporal constraint applies also to the representation-driven attentional spreading, and whether it holds for the stimulus-driven process elicited by real-life multisensory objects. The current event-related potential study investigated these questions by systematically manipulating the visual-to-auditory stimulus onset asynchrony (SOA: 0/100/300 ms) in an object-selective visual recognition task wherein the representation-driven and stimulus-driven spreading processes, measured as two distinct auditory negative difference (Nd) components, could be isolated independently. Our results showed that both the representation-driven and stimulus-driven Nds decreased as the SOA increased. Interestingly, the representation-driven Nd was completely absent, whereas the stimulus-driven Nd was still robust, when the auditory constituents were delayed by 300 ms. These findings not only indicate that the role of audiovisual simultaneity in the representation-driven attentional spreading has been underestimated, but also suggest that learned associations between the unisensory constituents of real-life objects render the stimulus-driven attentional spreading more tolerant of audiovisual asynchrony.</p>","PeriodicalId":94182,"journal":{"name":"Psychophysiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychophysiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/psyp.14527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multisensory integration and attention can interact in a way that attention to the visual constituent of a multisensory object results in an attentional spreading to its ignored auditory constituent, which can be either stimulus-driven or representation-driven depending on whether the object's visual constituent receives extra representation-based selective attention. Previous research using simple unrelated audiovisual combinations has shown that the stimulus-driven attentional spreading is contingent on audiovisual temporal simultaneity. However, little is known about whether this temporal constraint applies also to the representation-driven attentional spreading, and whether it holds for the stimulus-driven process elicited by real-life multisensory objects. The current event-related potential study investigated these questions by systematically manipulating the visual-to-auditory stimulus onset asynchrony (SOA: 0/100/300 ms) in an object-selective visual recognition task wherein the representation-driven and stimulus-driven spreading processes, measured as two distinct auditory negative difference (Nd) components, could be isolated independently. Our results showed that both the representation-driven and stimulus-driven Nds decreased as the SOA increased. Interestingly, the representation-driven Nd was completely absent, whereas the stimulus-driven Nd was still robust, when the auditory constituents were delayed by 300 ms. These findings not only indicate that the role of audiovisual simultaneity in the representation-driven attentional spreading has been underestimated, but also suggest that learned associations between the unisensory constituents of real-life objects render the stimulus-driven attentional spreading more tolerant of audiovisual asynchrony.