Nitric oxide synthase-guided genome mining identifies a cytochrome P450 enzyme for olefin nitration in bacterial specialized metabolism

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Synthetic and Systems Biotechnology Pub Date : 2024-01-17 DOI:10.1016/j.synbio.2024.01.005
Hu Li , Wei Li , Kaihui Song , Yu Liu , Guiyun Zhao , Yi-Ling Du
{"title":"Nitric oxide synthase-guided genome mining identifies a cytochrome P450 enzyme for olefin nitration in bacterial specialized metabolism","authors":"Hu Li ,&nbsp;Wei Li ,&nbsp;Kaihui Song ,&nbsp;Yu Liu ,&nbsp;Guiyun Zhao ,&nbsp;Yi-Ling Du","doi":"10.1016/j.synbio.2024.01.005","DOIUrl":null,"url":null,"abstract":"<div><p>The biological signaling molecule nitric oxide (NO) has recently emerged as a metabolic precursor for the creation of microbial natural products with diversified structures and biological activities. Within the biosynthetic gene clusters (BGCs) of these compounds, genes associated with NO production pathways have been pinpointed. In this study, we employ a nitric oxide synthase (NOS)-guided genome mining strategy for the targeted discovery of NO-derived bacterial natural products and NO-utilizing biocatalysts. We show that a conserved NOS-containing BGC, distributed across several actinobacterial genomes, is responsible for the biosynthesis of lajollamycin, a unique nitro-tetraene-containing antibiotic whose biosynthetic mechanism remains elusive. Through a combination of in vivo and in vitro studies, we unveil the first cytochrome P450 enzyme capable of catalyzing olefin nitration in natural product biosynthesis. These results not only expand the current knowledge about biosynthetic nitration processes but also offer an efficient way for targeted identification of NO-utilizing metabolic pathways and novel nitrating biocatalysts.</p></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405805X2400005X/pdfft?md5=a6bd2203eec7a9e46938bd177f8fbe54&pid=1-s2.0-S2405805X2400005X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X2400005X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The biological signaling molecule nitric oxide (NO) has recently emerged as a metabolic precursor for the creation of microbial natural products with diversified structures and biological activities. Within the biosynthetic gene clusters (BGCs) of these compounds, genes associated with NO production pathways have been pinpointed. In this study, we employ a nitric oxide synthase (NOS)-guided genome mining strategy for the targeted discovery of NO-derived bacterial natural products and NO-utilizing biocatalysts. We show that a conserved NOS-containing BGC, distributed across several actinobacterial genomes, is responsible for the biosynthesis of lajollamycin, a unique nitro-tetraene-containing antibiotic whose biosynthetic mechanism remains elusive. Through a combination of in vivo and in vitro studies, we unveil the first cytochrome P450 enzyme capable of catalyzing olefin nitration in natural product biosynthesis. These results not only expand the current knowledge about biosynthetic nitration processes but also offer an efficient way for targeted identification of NO-utilizing metabolic pathways and novel nitrating biocatalysts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一氧化氮合成酶引导的基因组挖掘发现了细菌特殊代谢中的烯烃硝化细胞色素 P450 酶
生物信号分子一氧化氮(NO)近来已成为一种代谢前体,用于制造具有多种结构和生物活性的微生物天然产物。在这些化合物的生物合成基因簇(BGC)中,与一氧化氮产生途径相关的基因已被确定。在本研究中,我们采用了以一氧化氮合成酶(NOS)为指导的基因组挖掘策略,有针对性地发现了氮氧化物衍生的细菌天然产物和氮氧化物利用生物催化剂。我们发现,分布在多个放线菌基因组中的一种保守的含一氧化氮合成酶的 BGC 负责拉霉素的生物合成,拉霉素是一种独特的含硝基四烯的抗生素,其生物合成机制至今仍不清楚。通过结合体内和体外研究,我们揭示了第一个能够在天然产物生物合成过程中催化烯烃硝化的细胞色素 P450 酶。这些结果不仅拓展了目前有关生物合成硝化过程的知识,而且为有针对性地鉴定利用氮氧化物的代谢途径和新型硝化生物催化剂提供了有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Synthetic and Systems Biotechnology
Synthetic and Systems Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
6.90
自引率
12.50%
发文量
90
审稿时长
67 days
期刊介绍: Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.
期刊最新文献
Functional investigation of the SAM-dependent methyltransferase RdmB in anthracycline biosynthesis Outside Front Cover Tissue chips as headway model and incitement technology Biosynthesis of the benzylpyrrolidine precursor in anisomycin by a unique ThDP-dependent enzyme Enhancing levan biosynthesis by destroying the strongly acidic environment caused by membrane-bound glucose dehydrogenase (mGDH) in Gluconobacter sp. MP2116
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1