{"title":"Bio-inspired design of next-generation ultrapermeable membrane systems","authors":"Jiu Luo, Mingheng Li, Yi Heng","doi":"10.1038/s41545-024-00297-7","DOIUrl":null,"url":null,"abstract":"Ultrapermeable membranes (UPMs) have the potential of improving water production efficiency. However, operating at high water fluxes will intensify concentration polarization and membrane fouling. Inspired by the V-formation of birds in nature we propose a transformative membrane module that enables a doubled mass transfer coefficient with a moderately increased friction loss coefficient. Moreover, we present a practical technological pathway for the UPM systems to achieve 338% improvement of average water flux and 18% energy savings relative to state-of-the-art seawater desalination plants. The work makes it practical to operate at a high average water flux of 84 L m−2 h−1 with a controlled concentration polarization for the UPM systems. It breaks through the module development bottlenecks for the next-generation UPM systems and has enormous potential application for alleviating water scarcity crisis in the coming decades.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":null,"pages":null},"PeriodicalIF":10.4000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00297-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00297-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrapermeable membranes (UPMs) have the potential of improving water production efficiency. However, operating at high water fluxes will intensify concentration polarization and membrane fouling. Inspired by the V-formation of birds in nature we propose a transformative membrane module that enables a doubled mass transfer coefficient with a moderately increased friction loss coefficient. Moreover, we present a practical technological pathway for the UPM systems to achieve 338% improvement of average water flux and 18% energy savings relative to state-of-the-art seawater desalination plants. The work makes it practical to operate at a high average water flux of 84 L m−2 h−1 with a controlled concentration polarization for the UPM systems. It breaks through the module development bottlenecks for the next-generation UPM systems and has enormous potential application for alleviating water scarcity crisis in the coming decades.
npj Clean WaterEnvironmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍:
npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.