Optimization of the Dirichlet problem for gradient differential inclusions

Elimhan N. Mahmudov, Dilara Mastaliyeva
{"title":"Optimization of the Dirichlet problem for gradient differential inclusions","authors":"Elimhan N. Mahmudov, Dilara Mastaliyeva","doi":"10.1007/s00030-023-00904-5","DOIUrl":null,"url":null,"abstract":"<p>The paper is devoted to optimization of the gradient differential inclusions (DFIs) on a rectangular area. The discretization method is the main method for solving the proposed boundary value problem. For the transition from discrete to continuous, a specially proven equivalence theorem is provided. To optimize the posed continuous gradient DFIs, a passage to the limit is required in the discrete-approximate problem. Necessary and sufficient conditions of optimality for such problems are derived in the Euler–Lagrange form. The results obtained in terms of the divergence operation of the Euler–Lagrange adjoint inclusion are extended to the multidimensional case. Such results are based on locally adjoint mappings, being related coderivative concept of Mordukhovich.\n</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00904-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper is devoted to optimization of the gradient differential inclusions (DFIs) on a rectangular area. The discretization method is the main method for solving the proposed boundary value problem. For the transition from discrete to continuous, a specially proven equivalence theorem is provided. To optimize the posed continuous gradient DFIs, a passage to the limit is required in the discrete-approximate problem. Necessary and sufficient conditions of optimality for such problems are derived in the Euler–Lagrange form. The results obtained in terms of the divergence operation of the Euler–Lagrange adjoint inclusion are extended to the multidimensional case. Such results are based on locally adjoint mappings, being related coderivative concept of Mordukhovich.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
梯度微分夹杂的德里赫特问题优化
本文致力于优化矩形区域上的梯度微分夹杂(DFIs)。离散化方法是求解拟议边界值问题的主要方法。为实现从离散到连续的过渡,提供了一个专门证明的等价定理。为了优化所提出的连续梯度 DFI,离散近似问题中需要通过极限。以欧拉-拉格朗日形式推导出了此类问题最优化的必要条件和充分条件。根据欧拉-拉格朗日邻接包含的发散运算得到的结果被扩展到多维情况。这些结果以局部邻接映射为基础,与莫尔杜霍维奇的 coderivative 概念相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A note on averaging for the dispersion-managed NLS Global regularity of 2D generalized incompressible magnetohydrodynamic equations Classical and generalized solutions of an alarm-taxis model Sign-changing solution for an elliptic equation with critical growth at the boundary New critical point theorem and infinitely many normalized small-magnitude solutions of mass supercritical Schrödinger equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1