Effect of pH on Supramolecular Assemblies in Fulvic Acid Solutions

IF 1.1 4区 化学 Q4 CHEMISTRY, PHYSICAL Doklady Physical Chemistry Pub Date : 2024-01-20 DOI:10.1134/s0012501623600316
G. N. Fedotov, S. A. Shoba, I. V. Gorepekin, O. A. Salimgareeva, A. I. Sukharev, T. A. Gracheva
{"title":"Effect of pH on Supramolecular Assemblies in Fulvic Acid Solutions","authors":"G. N. Fedotov, S. A. Shoba, I. V. Gorepekin, O. A. Salimgareeva, A. I. Sukharev, T. A. Gracheva","doi":"10.1134/s0012501623600316","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The effect of alkalinization of fulvic acid (FA) solutions on an increase in their optical density has been studied. To explain this phenomenon, FA particles existing in solutions at different pH have been studied by scanning electron microscopy (SEM) and scanning tunneling microscopy (STM). It has been found that an increase in pH results in a noticeable decrease in the size of the supramolecular assemblies of FA molecules from ~200 to ~100 nm. An STM study of FA samples demonstrates that FAs exist in solutions as supramolecular assemblies of several hundred nanometers in size formed by 10–20 nm FA particle molecules. The observed phenomenon has been explained using the existing ideas about the supramolecular fractal cluster organization of humic substances. The explanation states that the upper layer of F-clusters degrades to give FA particle molecules, while the cluster size is seen to decrease. The FA particle molecules cannot be detected by SEM due to their small size, but they are readily visualized by STM.</p>","PeriodicalId":532,"journal":{"name":"Doklady Physical Chemistry","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Physical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s0012501623600316","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of alkalinization of fulvic acid (FA) solutions on an increase in their optical density has been studied. To explain this phenomenon, FA particles existing in solutions at different pH have been studied by scanning electron microscopy (SEM) and scanning tunneling microscopy (STM). It has been found that an increase in pH results in a noticeable decrease in the size of the supramolecular assemblies of FA molecules from ~200 to ~100 nm. An STM study of FA samples demonstrates that FAs exist in solutions as supramolecular assemblies of several hundred nanometers in size formed by 10–20 nm FA particle molecules. The observed phenomenon has been explained using the existing ideas about the supramolecular fractal cluster organization of humic substances. The explanation states that the upper layer of F-clusters degrades to give FA particle molecules, while the cluster size is seen to decrease. The FA particle molecules cannot be detected by SEM due to their small size, but they are readily visualized by STM.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pH 值对富勒酸溶液中超分子组装的影响
摘要 研究了富勒酸(FA)溶液碱化对其光密度增加的影响。为了解释这一现象,我们用扫描电子显微镜(SEM)和扫描隧道显微镜(STM)研究了存在于不同 pH 值溶液中的富勒酸颗粒。研究发现,pH 值的增加会导致 FA 分子超分子集合体的尺寸从 ~200 纳米明显减小到 ~100 纳米。对 FA 样品的 STM 研究表明,FA 存在于溶液中,是由 10-20 纳米 FA 粒子分子形成的几百纳米大小的超分子集合体。现有的关于腐殖质超分子分形簇组织的观点解释了所观察到的现象。该解释指出,上层的 F 簇会降解生成 FA 粒子分子,而簇的大小则会减小。由于 FA 粒子分子较小,因此无法通过扫描电镜检测到,但通过 STM 却很容易观察到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Doklady Physical Chemistry
Doklady Physical Chemistry 化学-物理化学
CiteScore
1.50
自引率
0.00%
发文量
9
审稿时长
6-12 weeks
期刊介绍: Doklady Physical Chemistry is a monthly journal containing English translations of current Russian research in physical chemistry from the Physical Chemistry sections of the Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences). The journal publishes the most significant new research in physical chemistry being done in Russia, thus ensuring its scientific priority. Doklady Physical Chemistry presents short preliminary accounts of the application of the state-of-the-art physical chemistry ideas and methods to the study of organic and inorganic compounds and macromolecules; polymeric, inorganic and composite materials as well as corresponding processes. The journal is intended for scientists in all fields of chemistry and in interdisciplinary sciences.
期刊最新文献
Prediction of Mechanical Properties of High-Entropy Carbide (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C with the Use of Machine Learning Potential Effect of CTAB Micellar Medium on Cu(II) Catalyzed L-Leucine Oxidation by Hexacyanoferrate(III) Effect of the Solvent Nature on the Biological Activity of Gold-Containing Systems Quantization of Electrical Conductance in Layered Zr/ZrO2/Au Memristive Structures A New Strategy for the Synthesis of Highly Active Catalysts Based on g-C3N4 for Photocatalytic Production of Hydrogen under Visible Light
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1