Gang Wang , Yibing Liu , Yafan Hu , Jiaqi Pan , Zifan Wei , Bowen Tai , Bolei Yang , Erfeng Li , Fuguo Xing
{"title":"AwSclB regulates a network for Aspergillus westerdijkiae asexual sporulation and secondary metabolism independent of the fungal light control","authors":"Gang Wang , Yibing Liu , Yafan Hu , Jiaqi Pan , Zifan Wei , Bowen Tai , Bolei Yang , Erfeng Li , Fuguo Xing","doi":"10.1016/j.fgb.2024.103865","DOIUrl":null,"url":null,"abstract":"<div><p>As a prevalent pathogenic fungus, <em>Aspergillus westerdijkiae</em> poses a threat to both food safety and human health. The fungal growth, conidia production and ochratoxin A (OTA) in <em>A. weterdijkiae</em> are regulated by many factors especially transcription factors. In this study, a transcription factor <em>AwSclB</em> in <em>A. westerdijkiae</em> was identified and its function in asexual sporulation and OTA biosynthesis was investigated. In addition, the effect of light control on <em>AwSclB</em> regulation was also tested. The deletion of <em>AwSclB</em> gene could reduce conidia production by down-regulation of conidia genes and increase OTA biosynthesis by up-regulation of cluster genes, regardless under light or dark conditions. It is worth to note that the inhibitory effect of light on OTA biosynthesis was reversed by the knockout of <em>AwSclB</em> gene. The yeast one-hybrid assay indicated that <em>AwSclB</em> could interact with the promoters of <em>BrlA</em>, <em>ConJ</em> and <em>OtaR1</em> genes. This result suggests that <em>AwSclB</em> in <em>A. westerdijkiae</em> can directly regulate asexual conidia formation by activating the central developmental pathway <em>BrlA-AbaA-WetA</em> through up-regulating the expression of <em>AwBrlA</em>, and promote the light response of the strain by activating <em>ConJ</em>. However, <em>AwSclB</em> itself is unable to respond to light regulation. This finding will deepen our understanding of the molecular regulation of <em>A. westerdijkiae</em> development and secondary metabolism, and provide potential targets for the development of new fungicides.</p></div>","PeriodicalId":55135,"journal":{"name":"Fungal Genetics and Biology","volume":"171 ","pages":"Article 103865"},"PeriodicalIF":2.4000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Genetics and Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1087184524000021","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
As a prevalent pathogenic fungus, Aspergillus westerdijkiae poses a threat to both food safety and human health. The fungal growth, conidia production and ochratoxin A (OTA) in A. weterdijkiae are regulated by many factors especially transcription factors. In this study, a transcription factor AwSclB in A. westerdijkiae was identified and its function in asexual sporulation and OTA biosynthesis was investigated. In addition, the effect of light control on AwSclB regulation was also tested. The deletion of AwSclB gene could reduce conidia production by down-regulation of conidia genes and increase OTA biosynthesis by up-regulation of cluster genes, regardless under light or dark conditions. It is worth to note that the inhibitory effect of light on OTA biosynthesis was reversed by the knockout of AwSclB gene. The yeast one-hybrid assay indicated that AwSclB could interact with the promoters of BrlA, ConJ and OtaR1 genes. This result suggests that AwSclB in A. westerdijkiae can directly regulate asexual conidia formation by activating the central developmental pathway BrlA-AbaA-WetA through up-regulating the expression of AwBrlA, and promote the light response of the strain by activating ConJ. However, AwSclB itself is unable to respond to light regulation. This finding will deepen our understanding of the molecular regulation of A. westerdijkiae development and secondary metabolism, and provide potential targets for the development of new fungicides.
期刊介绍:
Fungal Genetics and Biology, formerly known as Experimental Mycology, publishes experimental investigations of fungi and their traditional allies that relate structure and function to growth, reproduction, morphogenesis, and differentiation. This journal especially welcomes studies of gene organization and expression and of developmental processes at the cellular, subcellular, and molecular levels. The journal also includes suitable experimental inquiries into fungal cytology, biochemistry, physiology, genetics, and phylogeny.
Fungal Genetics and Biology publishes basic research conducted by mycologists, cell biologists, biochemists, geneticists, and molecular biologists.
Research Areas include:
• Biochemistry
• Cytology
• Developmental biology
• Evolutionary biology
• Genetics
• Molecular biology
• Phylogeny
• Physiology.