{"title":"The automatic diagnosis artificial intelligence system for preoperative magnetic resonance imaging of uterine sarcoma.","authors":"Yusuke Toyohara, Kenbun Sone, Katsuhiko Noda, Kaname Yoshida, Shimpei Kato, Masafumi Kaiume, Ayumi Taguchi, Ryo Kurokawa, Yutaka Osuga","doi":"10.3802/jgo.2024.35.e24","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Magnetic resonance imaging (MRI) is efficient for the diagnosis of preoperative uterine sarcoma; however, misdiagnoses may occur. In this study, we developed a new artificial intelligence (AI) system to overcome the limitations of requiring specialists to manually process datasets and a large amount of computer resources.</p><p><strong>Methods: </strong>The AI system comprises a tumor image filter, which extracts MRI slices containing tumors, and sarcoma evaluator, which diagnoses uterine sarcomas. We used 15 types of MRI patient sequences to train deep neural network (DNN) models used by tumor filter and sarcoma evaluator with 8 cross-validation sets. We implemented tumor filter and sarcoma evaluator using ensemble prediction technique with 9 DNN models. Ten tumor filters and sarcoma evaluator sets were developed to evaluate fluctuation accuracy. Finally, AutoDiag-AI was used to evaluate the new validation dataset, including 8 cases of sarcomas and 24 leiomyomas.</p><p><strong>Results: </strong>Tumor image filter and sarcoma evaluator accuracies were 92.68% and 90.50%, respectively. AutoDiag-AI with the original dataset accuracy was 89.32%, with 90.47% sensitivity and 88.95% specificity, whereas AutoDiag-AI with the new validation dataset accuracy was 92.44%, with 92.25% sensitivity and 92.50% specificity.</p><p><strong>Conclusion: </strong>Our newly established AI system automatically extracts tumor sites from MRI images and diagnoses them as uterine sarcomas without human intervention. Its accuracy is comparable to that of a radiologist. With further validation, the system could be applied for diagnosis of other diseases. Further improvement of the system's accuracy may enable its clinical application in the future.</p>","PeriodicalId":15868,"journal":{"name":"Journal of Gynecologic Oncology","volume":" ","pages":"e24"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11107276/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Gynecologic Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3802/jgo.2024.35.e24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Magnetic resonance imaging (MRI) is efficient for the diagnosis of preoperative uterine sarcoma; however, misdiagnoses may occur. In this study, we developed a new artificial intelligence (AI) system to overcome the limitations of requiring specialists to manually process datasets and a large amount of computer resources.
Methods: The AI system comprises a tumor image filter, which extracts MRI slices containing tumors, and sarcoma evaluator, which diagnoses uterine sarcomas. We used 15 types of MRI patient sequences to train deep neural network (DNN) models used by tumor filter and sarcoma evaluator with 8 cross-validation sets. We implemented tumor filter and sarcoma evaluator using ensemble prediction technique with 9 DNN models. Ten tumor filters and sarcoma evaluator sets were developed to evaluate fluctuation accuracy. Finally, AutoDiag-AI was used to evaluate the new validation dataset, including 8 cases of sarcomas and 24 leiomyomas.
Results: Tumor image filter and sarcoma evaluator accuracies were 92.68% and 90.50%, respectively. AutoDiag-AI with the original dataset accuracy was 89.32%, with 90.47% sensitivity and 88.95% specificity, whereas AutoDiag-AI with the new validation dataset accuracy was 92.44%, with 92.25% sensitivity and 92.50% specificity.
Conclusion: Our newly established AI system automatically extracts tumor sites from MRI images and diagnoses them as uterine sarcomas without human intervention. Its accuracy is comparable to that of a radiologist. With further validation, the system could be applied for diagnosis of other diseases. Further improvement of the system's accuracy may enable its clinical application in the future.
期刊介绍:
The Journal of Gynecologic Oncology (JGO) is an official publication of the Asian Society of Gynecologic Oncology. Abbreviated title is ''J Gynecol Oncol''. It was launched in 1990. The JGO''s aim is to publish the highest quality manuscripts dedicated to the advancement of care of the patients with gynecologic cancer. It is an international peer-reviewed periodical journal that is published bimonthly (January, March, May, July, September, and November). Supplement numbers are at times published. The journal publishes editorials, original and review articles, correspondence, book review, etc.