Neural control of reproduction in reptiles

Nicholas T. Shankey, Rachel E. Cohen
{"title":"Neural control of reproduction in reptiles","authors":"Nicholas T. Shankey,&nbsp;Rachel E. Cohen","doi":"10.1002/jez.2783","DOIUrl":null,"url":null,"abstract":"<p>Reptiles display considerable diversity in reproductive behavior, making them great models to study the neuroendocrine control of reproductive behavior. Many reptile species are seasonally breeding, such that they become reproductively active during their breeding season and regress to a nonreproductive state during their nonbreeding season, with this transition often prompted by environmental cues. In this review, we will focus on summarizing the neural and neuroendocrine mechanisms controlling reproductive behavior. Three major areas of the brain are involved in reproductive behavior: the preoptic area (POA), amygdala, and ventromedial hypothalamus (VMH). The POA and VMH are sexually dimorphic areas, regulating behaviors in males and females respectively, and all three areas display seasonal plasticity. Lesions to these areas disrupt the onset and maintenance of reproductive behaviors, but the exact roles of these regions vary between sexes and species. Different hormones influence these regions to elicit seasonal transitions. Circulating testosterone (T) and estradiol (E2) peak during the breeding season and their influence on reproduction is well-documented across vertebrates. The conversion of T into E2 and 5α-dihydrotestosterone can also affect behavior. Melatonin and corticosterone have generally inhibitory effects on reproductive behavior, while serotonin and other neurohormones seem to stimulate it. In general, there is relatively little information on the neuroendocrine control of reproduction in reptiles compared to other vertebrate groups. This review highlights areas that should be considered for future areas of research.</p>","PeriodicalId":15711,"journal":{"name":"Journal of experimental zoology. Part A, Ecological and integrative physiology","volume":"341 3","pages":"307-321"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part A, Ecological and integrative physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.2783","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Reptiles display considerable diversity in reproductive behavior, making them great models to study the neuroendocrine control of reproductive behavior. Many reptile species are seasonally breeding, such that they become reproductively active during their breeding season and regress to a nonreproductive state during their nonbreeding season, with this transition often prompted by environmental cues. In this review, we will focus on summarizing the neural and neuroendocrine mechanisms controlling reproductive behavior. Three major areas of the brain are involved in reproductive behavior: the preoptic area (POA), amygdala, and ventromedial hypothalamus (VMH). The POA and VMH are sexually dimorphic areas, regulating behaviors in males and females respectively, and all three areas display seasonal plasticity. Lesions to these areas disrupt the onset and maintenance of reproductive behaviors, but the exact roles of these regions vary between sexes and species. Different hormones influence these regions to elicit seasonal transitions. Circulating testosterone (T) and estradiol (E2) peak during the breeding season and their influence on reproduction is well-documented across vertebrates. The conversion of T into E2 and 5α-dihydrotestosterone can also affect behavior. Melatonin and corticosterone have generally inhibitory effects on reproductive behavior, while serotonin and other neurohormones seem to stimulate it. In general, there is relatively little information on the neuroendocrine control of reproduction in reptiles compared to other vertebrate groups. This review highlights areas that should be considered for future areas of research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
爬行动物繁殖的神经控制。
爬行动物的生殖行为具有相当大的多样性,因此是研究生殖行为的神经内分泌控制的绝佳模型。许多爬行动物的繁殖是季节性的,因此它们在繁殖季节生殖活跃,而在非繁殖季节则恢复到非生殖状态,这种转变通常是由环境线索引起的。在这篇综述中,我们将重点总结控制繁殖行为的神经和神经内分泌机制。大脑中有三个主要区域参与生殖行为:视前区(POA)、杏仁核和腹内侧下丘脑(VMH)。视前区和腹侧下丘脑是性双态区域,分别调节男性和女性的行为,这三个区域都具有季节可塑性。这些区域的损伤会扰乱生殖行为的开始和维持,但这些区域的确切作用因性别和物种而异。不同的激素会影响这些区域,从而引起季节性转换。循环中的睾酮(T)和雌二醇(E2)在繁殖季节达到高峰,它们对脊椎动物繁殖的影响已得到充分证实。睾酮转化为 E2 和 5α 双氢睾酮也会影响行为。褪黑激素和皮质酮通常对繁殖行为有抑制作用,而血清素和其他神经激素似乎会刺激繁殖行为。总的来说,与其他脊椎动物相比,有关爬行动物生殖的神经内分泌控制的信息相对较少。本综述强调了未来研究应考虑的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of experimental zoology. Part A, Ecological and integrative physiology
Journal of experimental zoology. Part A, Ecological and integrative physiology Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
4.90
自引率
3.60%
发文量
0
期刊介绍: The Journal of Experimental Zoology – A publishes articles at the interface between Development, Physiology, Ecology and Evolution. Contributions that help to reveal how molecular, functional and ecological variation relate to one another are particularly welcome. The Journal publishes original research in the form of rapid communications or regular research articles, as well as perspectives and reviews on topics pertaining to the scope of the Journal. Acceptable articles are limited to studies on animals.
期刊最新文献
Regulation of Insect Hormones in Different Types of Diapause in Chilo Partellus (Swinhoe). Melatonin Alters Preference to Move Toward Monochromatic Lights in Female Syrian Hamsters: A Behavior Associated With Circadian Rhythm. Morphological and Histological Studies of the Bronchial and Parabronchial System of the White Pekin Duck (Anas platyrhynchos). Issue Information Postprandial Sleep in Short-Sleeping Mexican Cavefish
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1