Synergistic antibacterial effect of the pistachio green hull extract-loaded porphysome decorated with 4-nitroimidazole against bacteria.

IF 3.6 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Liposome Research Pub Date : 2024-09-01 Epub Date: 2024-01-22 DOI:10.1080/08982104.2024.2304755
Nastaran Mahafel, Zahra Vaezi, Mohsen Barzegar, Azadeh Hekmat, Hossein Naderi-Manesh
{"title":"Synergistic antibacterial effect of the pistachio green hull extract-loaded porphysome decorated with 4-nitroimidazole against bacteria.","authors":"Nastaran Mahafel, Zahra Vaezi, Mohsen Barzegar, Azadeh Hekmat, Hossein Naderi-Manesh","doi":"10.1080/08982104.2024.2304755","DOIUrl":null,"url":null,"abstract":"<p><p>'Active targeting' refers to modifying a nanocarrier's surface with targeting ligands. This study introduced an efficient approach for immobilizing imidazole-based drugs onto the metallated-porphyrin complex within the porphysome nanocarrier. To enhance cellular and bacterial uptake, a Ni-porphyrin with a fatty acid tail was synthesized and placed in the bilayer center of DPPC, facilitating receptor-mediated endocytosis. The Ni-porphyrin in the head group of the Ni-porphyrin-tail was placed superficially in the polar region of the membrane. Spherical unilamellar vesicle formation (DPPC: Ni-porphyrin-tail 4:1 mole ratio), as metallo-porphysome, was achieved through supramolecular self-assembly in an aqueous buffer. These vesicles exhibited a diameter of 279 ± 7 nm and a zeta potential of -15.3 ± 2.5 mV, showcasing their unique cytocompatibility. Nitroimidazole was decorated on the surface of metallo-porphysomes and pistachio green hull extract (PGHE) was loaded into the carrier for synergistic activity against (<i>E. coli</i>) and (<i>S. aureus</i>) bacteria strains. The physicochemical properties of Nitroimidazole-porphysome-PGHE, including size, zeta potential, morphology, loading efficiency, and release profile under various pH and temperature conditions in simulated gastrointestinal fluids were characterized. This combination therapy prevented bacterial cell attachment and biofilm formation in Caco-2 cells, as colon epithelial cells. The remarkable benefit of this system is that it does not affect cell viability even at 0.5 mg/ml. This study demonstrates the potential of a new co-delivery system using biocompatible metallo-porphysomes to decrease bacterial infections.</p>","PeriodicalId":16286,"journal":{"name":"Journal of Liposome Research","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Liposome Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08982104.2024.2304755","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

'Active targeting' refers to modifying a nanocarrier's surface with targeting ligands. This study introduced an efficient approach for immobilizing imidazole-based drugs onto the metallated-porphyrin complex within the porphysome nanocarrier. To enhance cellular and bacterial uptake, a Ni-porphyrin with a fatty acid tail was synthesized and placed in the bilayer center of DPPC, facilitating receptor-mediated endocytosis. The Ni-porphyrin in the head group of the Ni-porphyrin-tail was placed superficially in the polar region of the membrane. Spherical unilamellar vesicle formation (DPPC: Ni-porphyrin-tail 4:1 mole ratio), as metallo-porphysome, was achieved through supramolecular self-assembly in an aqueous buffer. These vesicles exhibited a diameter of 279 ± 7 nm and a zeta potential of -15.3 ± 2.5 mV, showcasing their unique cytocompatibility. Nitroimidazole was decorated on the surface of metallo-porphysomes and pistachio green hull extract (PGHE) was loaded into the carrier for synergistic activity against (E. coli) and (S. aureus) bacteria strains. The physicochemical properties of Nitroimidazole-porphysome-PGHE, including size, zeta potential, morphology, loading efficiency, and release profile under various pH and temperature conditions in simulated gastrointestinal fluids were characterized. This combination therapy prevented bacterial cell attachment and biofilm formation in Caco-2 cells, as colon epithelial cells. The remarkable benefit of this system is that it does not affect cell viability even at 0.5 mg/ml. This study demonstrates the potential of a new co-delivery system using biocompatible metallo-porphysomes to decrease bacterial infections.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用 4-硝基咪唑装饰的开心果绿壳提取物负载孔隙体对细菌的协同抗菌效果。
主动靶向 "是指用靶向配体修饰纳米载体的表面。本研究介绍了一种将咪唑类药物固定在多孔体纳米载体内金属化卟啉复合物上的有效方法。为了提高细胞和细菌的吸收率,我们合成了一种带有脂肪酸尾部的镍卟啉,并将其置于 DPPC 的双分子层中心,以促进受体介导的内吞。镍卟啉尾部头部的镍卟啉被置于膜极区的表层。通过在水性缓冲液中进行超分子自组装,形成了球形单纤毛膜囊泡(DPPC:镍卟啉尾的摩尔比为 4:1),即金属卟啉囊泡。这些囊泡的直径为 279 ± 7 nm,zeta 电位为 -15.3 ± 2.5 mV,显示了其独特的细胞相容性。硝基咪唑被装饰在金属卟啉表面,开心果绿壳提取物(PGHE)被载入载体,对(大肠杆菌)和(金黄色葡萄球菌)菌株具有协同活性。研究表征了硝基咪唑-孢子体-PGHE 的理化特性,包括尺寸、ZETA 电位、形态、负载效率以及在模拟胃肠液中不同 pH 值和温度条件下的释放曲线。这种组合疗法可防止结肠上皮细胞 Caco-2 细胞中的细菌细胞附着和生物膜形成。该系统的显著优点是,即使浓度为 0.5 毫克/毫升,也不会影响细胞活力。这项研究表明,使用生物相容性金属卟啉的新型联合给药系统具有减少细菌感染的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Liposome Research
Journal of Liposome Research 生物-生化与分子生物学
CiteScore
10.50
自引率
2.30%
发文量
24
审稿时长
3 months
期刊介绍: The Journal of Liposome Research aims to publish original, high-quality, peer-reviewed research on the topic of liposomes and related systems, lipid-based delivery systems, lipid biology, and both synthetic and physical lipid chemistry. Reviews and commentaries or editorials are generally solicited and are editorially reviewed. The Journal also publishes abstracts and conference proceedings including those from the International Liposome Society. The scope of the Journal includes: Formulation and characterisation of systems Formulation engineering of systems Synthetic and physical lipid chemistry Lipid Biology Biomembranes Vaccines Emerging technologies and systems related to liposomes and vesicle type systems Developmental methodologies and new analytical techniques pertaining to the general area Pharmacokinetics, pharmacodynamics and biodistribution of systems Clinical applications. The Journal also publishes Special Issues focusing on particular topics and themes within the general scope of the Journal.
期刊最新文献
Preparation and characterization of niosomes for the delivery of a lipophilic model drug: comparative stability study with liposomes against phospholipase-A2. Comparison of free vs. liposomal naringenin in white adipose tissue browning in C57BL/6j mice A comparative study of sensitizers and liposome composition in radiation-induced controlled drug release for cancer therapy. Design and preparation of pH-sensitive cytotoxic liposomal formulations containing antitumor colchicine analogues for target release. Impact of micelle characteristics on cholesterol absorption and ezetimibe inhibition: Insights from Niemann-Pick C1-like 1 binding and molecular structure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1