Salvatore Andrea Sciurello, Francesca Graziano, Maria Marcella Laganà, Elena Compalati, Gabriele Pappacoda, Simone Gambazza, Jorge Navarro, Pietro Cecconi, Francesca Baglio, Paolo Banfi
{"title":"Feasibility of high-frequency percussions in people with severe acquired brain injury and tracheostomy: an observational study.","authors":"Salvatore Andrea Sciurello, Francesca Graziano, Maria Marcella Laganà, Elena Compalati, Gabriele Pappacoda, Simone Gambazza, Jorge Navarro, Pietro Cecconi, Francesca Baglio, Paolo Banfi","doi":"10.4081/monaldi.2024.2734","DOIUrl":null,"url":null,"abstract":"<p><p>People with severe acquired brain injury (pwSABI) frequently experience pulmonary complications. Among these, atelectasis can occur as a result of pneumonia, thus increasing the chance of developing acute respiratory failure. Respiratory physiotherapy contribution to the management of atelectasis in pwSABI is yet poorly understood. We conducted a retrospective analysis on 15 non-cooperative pwSABI with tracheostomy and spontaneously breathing, hospitalized and treated with high-frequency percussion physiotherapy between September 2018 and February 2021 at the Neurological Rehabilitation Unit of the IRCCS \"S.Maria Nascente - Fondazione Don Gnocchi\", Milan. Our primary aim was to investigate the feasibility of such a physiotherapy intervention method. Then, we assessed changes in respiratory measures (arterial blood gas analysis and peripheral night-time oxygen saturation) and high-resolution computed tomography lung images, evaluated before and after the physiotherapy treatment. The radiological measures were a modified radiological atelectasis score (mRAS) assigned by two radiologists, and an opacity score automatically provided by the software CT Pneumonia Analysis® that identifies the regions of abnormal lung patterns. Treatment diaries showed that all treatments were completed, and no adverse events during treatment were registered. Among the 15 pwSABI analyzed, 8 were treated with IPV® and 7 with MetaNeb®. After a median of 14 (I-III quartile=12.5-14.5) days of treatment, we observed a statistical improvement in various arterial blood gas measures and peripheral night-time oxygen saturation measures. We also found radiological improvement or stability in more than 80% of pwSABI. In conclusion, our physiotherapy approach was feasible, and we observed respiratory parameters and radiological improvements. Using technology to assess abnormal tomographic patterns could be of interest to disentangle the short-term effects of respiratory physiotherapy on non-collaborating people.</p>","PeriodicalId":51593,"journal":{"name":"Monaldi Archives for Chest Disease","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monaldi Archives for Chest Disease","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/monaldi.2024.2734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
People with severe acquired brain injury (pwSABI) frequently experience pulmonary complications. Among these, atelectasis can occur as a result of pneumonia, thus increasing the chance of developing acute respiratory failure. Respiratory physiotherapy contribution to the management of atelectasis in pwSABI is yet poorly understood. We conducted a retrospective analysis on 15 non-cooperative pwSABI with tracheostomy and spontaneously breathing, hospitalized and treated with high-frequency percussion physiotherapy between September 2018 and February 2021 at the Neurological Rehabilitation Unit of the IRCCS "S.Maria Nascente - Fondazione Don Gnocchi", Milan. Our primary aim was to investigate the feasibility of such a physiotherapy intervention method. Then, we assessed changes in respiratory measures (arterial blood gas analysis and peripheral night-time oxygen saturation) and high-resolution computed tomography lung images, evaluated before and after the physiotherapy treatment. The radiological measures were a modified radiological atelectasis score (mRAS) assigned by two radiologists, and an opacity score automatically provided by the software CT Pneumonia Analysis® that identifies the regions of abnormal lung patterns. Treatment diaries showed that all treatments were completed, and no adverse events during treatment were registered. Among the 15 pwSABI analyzed, 8 were treated with IPV® and 7 with MetaNeb®. After a median of 14 (I-III quartile=12.5-14.5) days of treatment, we observed a statistical improvement in various arterial blood gas measures and peripheral night-time oxygen saturation measures. We also found radiological improvement or stability in more than 80% of pwSABI. In conclusion, our physiotherapy approach was feasible, and we observed respiratory parameters and radiological improvements. Using technology to assess abnormal tomographic patterns could be of interest to disentangle the short-term effects of respiratory physiotherapy on non-collaborating people.