{"title":"Generalized Estimating Equations Boosting (GEEB) machine for correlated data","authors":"","doi":"10.1186/s40537-023-00875-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Rapid development in data science enables machine learning and artificial intelligence to be the most popular research tools across various disciplines. While numerous articles have shown decent predictive ability, little research has examined the impact of complex correlated data. We aim to develop a more accurate model under repeated measures or hierarchical data structures. Therefore, this study proposes a novel algorithm, the Generalized Estimating Equations Boosting (GEEB) machine, to integrate the gradient boosting technique into the benchmark statistical approach that deals with the correlated data, the generalized Estimating Equations (GEE). Unlike the previous gradient boosting utilizing all input features, we randomly select some input features when building the model to reduce predictive errors. The simulation study evaluates the predictive performance of the GEEB, GEE, eXtreme Gradient Boosting (XGBoost), and Support Vector Machine (SVM) across several hierarchical structures with different sample sizes. Results suggest that the new strategy GEEB outperforms the GEE and demonstrates superior predictive accuracy than the SVM and XGBoost in most situations. An application to a real-world dataset, the Forest Fire Data, also revealed that the GEEB reduced mean squared errors by 4.5% to 25% compared to GEE, XGBoost, and SVM. This research also provides a freely available R function that could implement the GEEB machine effortlessly for longitudinal or hierarchical data.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"29 1 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-023-00875-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid development in data science enables machine learning and artificial intelligence to be the most popular research tools across various disciplines. While numerous articles have shown decent predictive ability, little research has examined the impact of complex correlated data. We aim to develop a more accurate model under repeated measures or hierarchical data structures. Therefore, this study proposes a novel algorithm, the Generalized Estimating Equations Boosting (GEEB) machine, to integrate the gradient boosting technique into the benchmark statistical approach that deals with the correlated data, the generalized Estimating Equations (GEE). Unlike the previous gradient boosting utilizing all input features, we randomly select some input features when building the model to reduce predictive errors. The simulation study evaluates the predictive performance of the GEEB, GEE, eXtreme Gradient Boosting (XGBoost), and Support Vector Machine (SVM) across several hierarchical structures with different sample sizes. Results suggest that the new strategy GEEB outperforms the GEE and demonstrates superior predictive accuracy than the SVM and XGBoost in most situations. An application to a real-world dataset, the Forest Fire Data, also revealed that the GEEB reduced mean squared errors by 4.5% to 25% compared to GEE, XGBoost, and SVM. This research also provides a freely available R function that could implement the GEEB machine effortlessly for longitudinal or hierarchical data.
期刊介绍:
The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.