{"title":"Robust second order cone conditions and duality for multiobjective problems under uncertainty data","authors":"Cao Thanh Tinh, Thai Doan Chuong","doi":"10.1007/s10898-023-01335-3","DOIUrl":null,"url":null,"abstract":"<p>This paper studies a class of multiobjective convex polynomial problems, where both the constraint and objective functions involve uncertain parameters that reside in ellipsoidal uncertainty sets. Employing the robust deterministic approach, we provide necessary conditions and sufficient conditions, which are exhibited in relation to second order cone conditions, for robust (weak) Pareto solutions of the uncertain multiobjective optimization problem. A dual multiobjective problem is proposed to examine robust converse, robust weak and robust strong duality relations between the primal and dual problems. Moreover, we establish robust solution relationships between the uncertain multiobjective optimization program and a (scalar) second order cone programming relaxation problem of a corresponding weighted-sum optimization problem. This in particular shows that we can find a robust (weak) Pareto solution of the uncertain multiobjective optimization problem by solving a second order cone programming relaxation.\n</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-023-01335-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies a class of multiobjective convex polynomial problems, where both the constraint and objective functions involve uncertain parameters that reside in ellipsoidal uncertainty sets. Employing the robust deterministic approach, we provide necessary conditions and sufficient conditions, which are exhibited in relation to second order cone conditions, for robust (weak) Pareto solutions of the uncertain multiobjective optimization problem. A dual multiobjective problem is proposed to examine robust converse, robust weak and robust strong duality relations between the primal and dual problems. Moreover, we establish robust solution relationships between the uncertain multiobjective optimization program and a (scalar) second order cone programming relaxation problem of a corresponding weighted-sum optimization problem. This in particular shows that we can find a robust (weak) Pareto solution of the uncertain multiobjective optimization problem by solving a second order cone programming relaxation.
期刊介绍:
The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest.
In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.