{"title":"Metal-based nanoparticles in antibacterial application in biomedical field: Current development and potential mechanisms","authors":"Hao Jiang, Lingzhi Li, Zhong Li, Xiang Chu","doi":"10.1007/s10544-023-00686-8","DOIUrl":null,"url":null,"abstract":"<div><p>The rise in drug resistance in pathogenic bacteria greatly endangers public health in the post-antibiotic era, and drug-resistant bacteria currently pose a great challenge not only to the community but also to clinical procedures, including surgery, stent implantation, organ transplantation, and other medical procedures involving any open wound and compromised human immunity. Biofilm-associated drug failure, as well as rapid resistance to last-resort antibiotics, necessitates the search for novel treatments against bacterial infection. In recent years, the flourishing development of nanotechnology has provided new insights for exploiting promising alternative therapeutics for drug-resistant bacteria. Metallic agents have been applied in antibacterial usage for several centuries, and the functional modification of metal-based biomaterials using nanotechnology has now attracted great interest in the antibacterial field, not only for their intrinsic antibacterial nature but also for their ready on-demand functionalization and enhanced interaction with bacteria, rendering them with good potential in further translation. However, the possible toxicity of MNPs to the host cells and tissue still hinders its application, and current knowledge on their interaction with cellular pathways is not enough. This review will focus on recent advances in developing metallic nanoparticles (MNPs), including silver, gold, copper, and other metallic nanoparticles, for antibacterial applications, and their potential mechanisms of interaction with pathogenic bacteria as well as hosts.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10806003/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-023-00686-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rise in drug resistance in pathogenic bacteria greatly endangers public health in the post-antibiotic era, and drug-resistant bacteria currently pose a great challenge not only to the community but also to clinical procedures, including surgery, stent implantation, organ transplantation, and other medical procedures involving any open wound and compromised human immunity. Biofilm-associated drug failure, as well as rapid resistance to last-resort antibiotics, necessitates the search for novel treatments against bacterial infection. In recent years, the flourishing development of nanotechnology has provided new insights for exploiting promising alternative therapeutics for drug-resistant bacteria. Metallic agents have been applied in antibacterial usage for several centuries, and the functional modification of metal-based biomaterials using nanotechnology has now attracted great interest in the antibacterial field, not only for their intrinsic antibacterial nature but also for their ready on-demand functionalization and enhanced interaction with bacteria, rendering them with good potential in further translation. However, the possible toxicity of MNPs to the host cells and tissue still hinders its application, and current knowledge on their interaction with cellular pathways is not enough. This review will focus on recent advances in developing metallic nanoparticles (MNPs), including silver, gold, copper, and other metallic nanoparticles, for antibacterial applications, and their potential mechanisms of interaction with pathogenic bacteria as well as hosts.
期刊介绍:
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology.
General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.
Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.