Changchang Li, Lei Shi, Ming Su, Xiaoheng Li, Qiqi Zhu, Ren-Shan Ge, Huitao Li
{"title":"Butorphanol inhibits androgen biosynthesis and metabolism in rat immature Leydig cells in vitro.","authors":"Changchang Li, Lei Shi, Ming Su, Xiaoheng Li, Qiqi Zhu, Ren-Shan Ge, Huitao Li","doi":"10.1139/cjpp-2023-0191","DOIUrl":null,"url":null,"abstract":"<p><p>Butorphanol is a synthetic opioid analgesic medication that is primarily used for the management of pain. Butorphanol may have an inhibitory effect on androgen biosynthesis and metabolism in rat immature Leydig cells. The objective of this study was to investigate the influence of butorphanol on androgen secretion by rat Leydig cells isolated from the 35-day-old male rats. Rat Leydig cells were cultured with 0.5-50 μM butorphanol for 3 h in vitro<i>.</i> Butorphanol at 5 and 50 μM significantly inhibited androgen secretion in immature Leydig cells. At 50 μM, butorphanol also blocked the effects of luteinizing hormone (LH) and 8bromo-cAMP-stimulated androgen secretion and 22R-hydroxycholesterol- and pregnenolone-mediated androgen production. Further analysis of the results showed that butorphanol downregulated the expression of genes involved in androgen production, including <i>Lhcgr</i> (LH receptor), <i>Cyp11a1</i> (cholesterol side-chain cleavage enzyme), <i>Srd5a1</i> (5α-reductase 1), and <i>Akr1c14</i> (3α-hydroxysteroid dehydrogenase). Additionally, butorphanol directly inhibited HSD3B1 (3β-hydroxysteroid dehydrogenase 1) and SRD5A1 activity. In conclusion, butorphanol may have side effects of inhibiting androgen biosynthesis and metabolism in Leydig cells.</p>","PeriodicalId":9520,"journal":{"name":"Canadian journal of physiology and pharmacology","volume":" ","pages":"270-280"},"PeriodicalIF":1.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of physiology and pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1139/cjpp-2023-0191","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Butorphanol is a synthetic opioid analgesic medication that is primarily used for the management of pain. Butorphanol may have an inhibitory effect on androgen biosynthesis and metabolism in rat immature Leydig cells. The objective of this study was to investigate the influence of butorphanol on androgen secretion by rat Leydig cells isolated from the 35-day-old male rats. Rat Leydig cells were cultured with 0.5-50 μM butorphanol for 3 h in vitro. Butorphanol at 5 and 50 μM significantly inhibited androgen secretion in immature Leydig cells. At 50 μM, butorphanol also blocked the effects of luteinizing hormone (LH) and 8bromo-cAMP-stimulated androgen secretion and 22R-hydroxycholesterol- and pregnenolone-mediated androgen production. Further analysis of the results showed that butorphanol downregulated the expression of genes involved in androgen production, including Lhcgr (LH receptor), Cyp11a1 (cholesterol side-chain cleavage enzyme), Srd5a1 (5α-reductase 1), and Akr1c14 (3α-hydroxysteroid dehydrogenase). Additionally, butorphanol directly inhibited HSD3B1 (3β-hydroxysteroid dehydrogenase 1) and SRD5A1 activity. In conclusion, butorphanol may have side effects of inhibiting androgen biosynthesis and metabolism in Leydig cells.
期刊介绍:
Published since 1929, the Canadian Journal of Physiology and Pharmacology is a monthly journal that reports current research in all aspects of physiology, nutrition, pharmacology, and toxicology, contributed by recognized experts and scientists. It publishes symposium reviews and award lectures and occasionally dedicates entire issues or portions of issues to subjects of special interest to its international readership. The journal periodically publishes a “Made In Canada” special section that features invited review articles from internationally recognized scientists who have received some of their training in Canada.