Characterization of the hoof bacterial communities in feedlot cattle affected with digital dermatitis, foot rot or both using a surface swab technique.

IF 4.9 Q1 MICROBIOLOGY Animal microbiome Pub Date : 2024-01-22 DOI:10.1186/s42523-023-00277-1
Nicholas S T Wong, Nilusha Malmuthge, Désirée Gellatly, Wiolene M Nordi, Trevor W Alexander, Rodrigo Ortega Polo, Eugene Janzen, Karen Schwartzkopf-Genswein, Murray Jelinski
{"title":"Characterization of the hoof bacterial communities in feedlot cattle affected with digital dermatitis, foot rot or both using a surface swab technique.","authors":"Nicholas S T Wong, Nilusha Malmuthge, Désirée Gellatly, Wiolene M Nordi, Trevor W Alexander, Rodrigo Ortega Polo, Eugene Janzen, Karen Schwartzkopf-Genswein, Murray Jelinski","doi":"10.1186/s42523-023-00277-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lameness is defined as altered or abnormal gait due to dysfunction of the locomotor system, and is a health issue of feedlot cattle, having major economic, labour, and welfare implications. Digital dermatitis (DD-a lesion of the plantar surface of the foot) and foot rot (FR-affects the interdigital cleft) are common infectious causes of lameness in feedlots. These hoof lesions can occur alone or in combination (DD + FR) in the same hoof. A total of 208 hoof swabs were collected from three commercial feedlots located in southern Alberta. Every lesion sample was matched with a corresponding control skin sample taken from a healthy contralateral foot. Control skin samples were also collected from cattle with no lesion on any feet. Bacterial communities of three types of hoof lesions (DD, DD + FR, FR) and healthy skin were profiled using 16S amplicon sequencing.</p><p><strong>Results: </strong>Alpha diversity analysis revealed a lower bacterial diversity on DD and FR lesions compared to control skin. Beta diversity analysis showed that bacterial communities of DD, FR, and DD + FR lesions were distinct from those of the control skin. While the impact of feedlot was minimal, lesion type contributed to 22% of the variation observed among bacterial communities (PERMANOVA-R = 0.22, P < 0.01). Compared to the corresponding control skin, there were 11, 12, and 3 differentially abundant (DA) bacterial genera in DD, DD + FR, and FR lesions, respectively.</p><p><strong>Conclusions: </strong>The bacterial community description of a DD + FR lesion is a novel finding. Not only did lesions lead to altered bacterial communities when compared to healthy skin, but the composition of those communities also differed depending on the hoof lesion. The 16S amplicon sequencing of surface swabs has significant value as a research tool in separating different hoof lesions and can provide additional insights to the polybacterial etiology of DD and FR in feedlot cattle.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10804539/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-023-00277-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Lameness is defined as altered or abnormal gait due to dysfunction of the locomotor system, and is a health issue of feedlot cattle, having major economic, labour, and welfare implications. Digital dermatitis (DD-a lesion of the plantar surface of the foot) and foot rot (FR-affects the interdigital cleft) are common infectious causes of lameness in feedlots. These hoof lesions can occur alone or in combination (DD + FR) in the same hoof. A total of 208 hoof swabs were collected from three commercial feedlots located in southern Alberta. Every lesion sample was matched with a corresponding control skin sample taken from a healthy contralateral foot. Control skin samples were also collected from cattle with no lesion on any feet. Bacterial communities of three types of hoof lesions (DD, DD + FR, FR) and healthy skin were profiled using 16S amplicon sequencing.

Results: Alpha diversity analysis revealed a lower bacterial diversity on DD and FR lesions compared to control skin. Beta diversity analysis showed that bacterial communities of DD, FR, and DD + FR lesions were distinct from those of the control skin. While the impact of feedlot was minimal, lesion type contributed to 22% of the variation observed among bacterial communities (PERMANOVA-R = 0.22, P < 0.01). Compared to the corresponding control skin, there were 11, 12, and 3 differentially abundant (DA) bacterial genera in DD, DD + FR, and FR lesions, respectively.

Conclusions: The bacterial community description of a DD + FR lesion is a novel finding. Not only did lesions lead to altered bacterial communities when compared to healthy skin, but the composition of those communities also differed depending on the hoof lesion. The 16S amplicon sequencing of surface swabs has significant value as a research tool in separating different hoof lesions and can provide additional insights to the polybacterial etiology of DD and FR in feedlot cattle.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用表面拭子技术确定患有数字皮炎、足部腐烂或同时患有这两种疾病的饲养场牛蹄细菌群落的特征。
背景:跛足是指由于运动系统功能障碍而导致的步态改变或异常,是饲养场牛的一个健康问题,对经济、劳动力和福利有重大影响。数码皮炎(DD--足跖面的病变)和腐蹄病(FR--影响趾间沟)是饲养场中常见的跛足感染原因。这些蹄部病变可能单独发生,也可能在同一蹄部同时发生(DD + FR)。我们从阿尔伯塔省南部的三个商业饲养场共收集了 208 份蹄拭子样本。每个病变样本都与取自健康对侧足部的相应对照皮肤样本相匹配。此外,还从脚部无损伤的牛身上采集了对照皮肤样本。使用 16S 扩增子测序法对三种类型的牛蹄病变(DD、DD + FR、FR)和健康皮肤的细菌群落进行了分析:结果:α多样性分析表明,与对照组皮肤相比,DD 和 FR 病损处的细菌多样性较低。Beta 多样性分析表明,DD、FR 和 DD + FR 病变部位的细菌群落与对照组皮肤的细菌群落截然不同。虽然饲养场的影响微乎其微,但病变类型造成了细菌群落间 22% 的差异(PERMANOVA-R = 0.22,P 结论):对 DD + FR 病变的细菌群落描述是一项新发现。与健康皮肤相比,病变不仅导致细菌群落发生变化,而且这些群落的组成也因蹄部病变而异。表面拭子的 16S 扩增子测序作为一种研究工具,在区分不同的蹄部病变方面具有重要价值,并能为了解饲养场牛 DD 和 FR 的多细菌病因提供更多信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Diet affects reproductive development and microbiota composition in honey bees. The role of gut microbiota in a generalist, golden snub-nosed monkey, adaptation to geographical diet change. Insights into the occurrence of phylosymbiosis and co-phylogeny in the holobionts of octocorals from the Mediterranean Sea and Red Sea. Programming rumen microbiome development in calves with the anti-methanogenic compound 3-NOP. Ruminant microbiome data are skewed and unFAIR, undermining their usefulness for sustainable production improvement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1