Benefits of the Curious Behavior of Bayesian Hierarchical Item Response Theory Models—An in-Depth Investigation and Bias Correction

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL Applied Psychological Measurement Pub Date : 2024-01-20 DOI:10.1177/01466216241227547
Christoph König, Rainer W. Alexandrowicz
{"title":"Benefits of the Curious Behavior of Bayesian Hierarchical Item Response Theory Models—An in-Depth Investigation and Bias Correction","authors":"Christoph König, Rainer W. Alexandrowicz","doi":"10.1177/01466216241227547","DOIUrl":null,"url":null,"abstract":"When using Bayesian hierarchical modeling, a popular approach for Item Response Theory (IRT) models, researchers typically face a tradeoff between the precision and accuracy of the item parameter estimates. Given the pooling principle and variance-dependent shrinkage, the expected behavior of Bayesian hierarchical IRT models is to deliver more precise but biased item parameter estimates, compared to those obtained in nonhierarchical models. Previous research, however, points out the possibility that, in the context of the two-parameter logistic IRT model, the aforementioned tradeoff has not to be made. With a comprehensive simulation study, we provide an in-depth investigation into this possibility. The results show a superior performance, in terms of bias, RMSE and precision, of the hierarchical specifications compared to the nonhierarchical counterpart. Under certain conditions, the bias in the item parameter estimates is independent of the bias in the variance components. Moreover, we provide a bias correction procedure for item discrimination parameter estimates. In sum, we show that IRT models create a unique situation where the Bayesian hierarchical approach indeed yields parameter estimates that are not only more precise, but also more accurate, compared to nonhierarchical approaches. We discuss this beneficial behavior from both theoretical and applied point of views.","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216241227547","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

When using Bayesian hierarchical modeling, a popular approach for Item Response Theory (IRT) models, researchers typically face a tradeoff between the precision and accuracy of the item parameter estimates. Given the pooling principle and variance-dependent shrinkage, the expected behavior of Bayesian hierarchical IRT models is to deliver more precise but biased item parameter estimates, compared to those obtained in nonhierarchical models. Previous research, however, points out the possibility that, in the context of the two-parameter logistic IRT model, the aforementioned tradeoff has not to be made. With a comprehensive simulation study, we provide an in-depth investigation into this possibility. The results show a superior performance, in terms of bias, RMSE and precision, of the hierarchical specifications compared to the nonhierarchical counterpart. Under certain conditions, the bias in the item parameter estimates is independent of the bias in the variance components. Moreover, we provide a bias correction procedure for item discrimination parameter estimates. In sum, we show that IRT models create a unique situation where the Bayesian hierarchical approach indeed yields parameter estimates that are not only more precise, but also more accurate, compared to nonhierarchical approaches. We discuss this beneficial behavior from both theoretical and applied point of views.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯分层项目反应理论模型奇异行为的益处--深入调查与偏差校正
贝叶斯层次模型是项目反应理论(IRT)模型的一种流行方法,研究人员在使用贝叶斯层次模型时,通常需要在项目参数估计的精确度和准确度之间做出权衡。考虑到集合原理和方差收缩,贝叶斯分层 IRT 模型的预期行为是,与非分层模型相比,提供更精确但有偏差的项目参数估计。然而,以往的研究指出,在双参数逻辑 IRT 模型中,可能不需要做出上述权衡。通过全面的模拟研究,我们对这种可能性进行了深入调查。结果表明,与非分层模型相比,分层模型在偏差、均方根误差和精度方面都有更出色的表现。在某些条件下,项目参数估计的偏差与方差成分的偏差无关。此外,我们还为项目区分度参数估计提供了一个偏差修正程序。总之,我们证明了 IRT 模型创造了一种独特的情况,即贝叶斯分层方法与非分层方法相比,不仅能获得更精确的参数估计,而且能获得更准确的参数估计。我们将从理论和应用两个角度讨论这种有益的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
期刊最新文献
Effect of Differential Item Functioning on Computer Adaptive Testing Under Different Conditions. Evaluating the Construct Validity of Instructional Manipulation Checks as Measures of Careless Responding to Surveys. A Mark-Recapture Approach to Estimating Item Pool Compromise. Estimating Test-Retest Reliability in the Presence of Self-Selection Bias and Learning/Practice Effects. The Improved EMS Algorithm for Latent Variable Selection in M3PL Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1