Fleet and Vertiport Sizing for an Urban Air Mobility Commuting Service

Mark T. Kotwicz Herniczek, Brian J. German, Lukas Preis
{"title":"Fleet and Vertiport Sizing for an Urban Air Mobility Commuting Service","authors":"Mark T. Kotwicz Herniczek, Brian J. German, Lukas Preis","doi":"10.1177/03611981231216977","DOIUrl":null,"url":null,"abstract":"An understanding of fleet size and vertiport size sensitivity to demand and operational parameters is necessary to quantify the scalability of urban air mobility (UAM) services. In this work, we implement a bilevel rolling window fleet scheduling formulation that includes vertiport area as a secondary objective. We also present a simple vertiport area estimation methodology that leverages the fleet scheduling results and provides a lower bound on vertiport infrastructure area requirements. Lastly, we explore the sensitivity of fleet size and vertiport infrastructure requirements to several vehicle and operational parameters, including geographical demand distribution, daily passenger volume, vehicle passenger capacity, passenger aggregation window, battery charge rate, pad separation, and pad size. We find that, although the fleet size is reasonable for a UAM commuting service scaled to serve 10,000 passengers per day, vertiport area requirements are likely problematic under current sizing guidance from the Federal Aviation Administration, particularly area requirements for vertiports that serve as workplace hubs located in dense urban centers.","PeriodicalId":309251,"journal":{"name":"Transportation Research Record: Journal of the Transportation Research Board","volume":"12 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Record: Journal of the Transportation Research Board","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03611981231216977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An understanding of fleet size and vertiport size sensitivity to demand and operational parameters is necessary to quantify the scalability of urban air mobility (UAM) services. In this work, we implement a bilevel rolling window fleet scheduling formulation that includes vertiport area as a secondary objective. We also present a simple vertiport area estimation methodology that leverages the fleet scheduling results and provides a lower bound on vertiport infrastructure area requirements. Lastly, we explore the sensitivity of fleet size and vertiport infrastructure requirements to several vehicle and operational parameters, including geographical demand distribution, daily passenger volume, vehicle passenger capacity, passenger aggregation window, battery charge rate, pad separation, and pad size. We find that, although the fleet size is reasonable for a UAM commuting service scaled to serve 10,000 passengers per day, vertiport area requirements are likely problematic under current sizing guidance from the Federal Aviation Administration, particularly area requirements for vertiports that serve as workplace hubs located in dense urban centers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
城市空中交通通勤服务的机队和 Vertiport 选型
要量化城市空中交通(UAM)服务的可扩展性,就必须了解机队规模和候机楼规模对需求和运行参数的敏感性。在这项工作中,我们实施了一种双层滚动窗口机队调度方案,将 vertiport 面积作为次要目标。我们还提出了一种简单的候机楼面积估算方法,该方法利用了机队调度结果,并提供了候机楼基础设施面积要求的下限。最后,我们探讨了车队规模和 vertiport 基础设施要求对多个车辆和运营参数的敏感性,包括地理需求分布、日客运量、车辆载客量、乘客聚集窗口、电池充电率、停机坪间距和停机坪大小。我们发现,虽然对于每天服务 10,000 名乘客的 UAM 通勤服务而言,车队规模是合理的,但根据联邦航空管理局目前的规模指南,特别是对于位于密集城市中心的工作场所枢纽的地面站面积要求,地面站面积要求很可能存在问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Traffic Safety Analysis using Unmanned Aerial Vehicle Technology at Unsignalized Intersections in Heterogeneous Traffic Role of Bystanders on Women’s Perception of Personal Security When Using Public Transport Comprehensive Investigation of Pedestrian Hit-and-Run Crashes: Applying XGBoost and Binary Logistic Regression Model Insights for Sustainable Urban Transport via Private Charging Pile Sharing in the Electric Vehicle Sector Correlates of Modal Substitution and Induced Travel of Ridehailing in California
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1