Jun Luo, Yuanxin Liu, Huayan Pu, Shujin Yuan, Lei Hou, Chunlin Zhang, Jin Yi, Yi Qin, Xiaoxu Huang
{"title":"Modelling and analysis of the intersecting axis permanent magnet eddy-current coupler","authors":"Jun Luo, Yuanxin Liu, Huayan Pu, Shujin Yuan, Lei Hou, Chunlin Zhang, Jin Yi, Yi Qin, Xiaoxu Huang","doi":"10.1049/elp2.12419","DOIUrl":null,"url":null,"abstract":"<p>The permanent magnet eddy-current coupler (PMEC) is a kind of non-contact, stepless speed regulation device and has been widely used in transmissions. However, the current PMECs are coaxial and cannot achieve transmission and speed regulation in intersecting axes. An intersecting-axis permanent magnet (PM) eddy current coupler (IPMEC), which consists of a disk-type PM rotor and a barrel-type conductive sheet (CS) rotor arranged with intersecting axes, is proposed. It generates eddy currents through the speed difference between the two rotors and uses the non-contact electromagnetic force between the eddy currents and permanent magnets to transmit torque. During operation, the speed can be adjusted by altering the coupling area or air gap. A theoretical model of the IPMEC based on the equivalent magnetic circuit method is presented and verified by finite element simulation using ANSYS. Then, the effects of the pole number of the PMs, the radius of the CS rotor and the PM rotor on the performance were analysed, and the design method of the IPMEC was proposed. This study can be used to expand the application range of PMECs.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.12419","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.12419","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The permanent magnet eddy-current coupler (PMEC) is a kind of non-contact, stepless speed regulation device and has been widely used in transmissions. However, the current PMECs are coaxial and cannot achieve transmission and speed regulation in intersecting axes. An intersecting-axis permanent magnet (PM) eddy current coupler (IPMEC), which consists of a disk-type PM rotor and a barrel-type conductive sheet (CS) rotor arranged with intersecting axes, is proposed. It generates eddy currents through the speed difference between the two rotors and uses the non-contact electromagnetic force between the eddy currents and permanent magnets to transmit torque. During operation, the speed can be adjusted by altering the coupling area or air gap. A theoretical model of the IPMEC based on the equivalent magnetic circuit method is presented and verified by finite element simulation using ANSYS. Then, the effects of the pole number of the PMs, the radius of the CS rotor and the PM rotor on the performance were analysed, and the design method of the IPMEC was proposed. This study can be used to expand the application range of PMECs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.