ANFIS-based Framework for the Prediction of Bearing’s Remaining Useful Life

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-01-17 DOI:10.36001/ijphm.2024.v15i1.3791
Abdel wahhab Lourari, T. Benkedjouh, Bilal El Yousfi, A. Soualhi
{"title":"ANFIS-based Framework for the Prediction of Bearing’s Remaining Useful Life","authors":"Abdel wahhab Lourari, T. Benkedjouh, Bilal El Yousfi, A. Soualhi","doi":"10.36001/ijphm.2024.v15i1.3791","DOIUrl":null,"url":null,"abstract":"Bearings are critical components extensively used in rotary machines, often being the leading cause of unexpected machine shutdowns. To mitigate system failures, it is crucial to implement effective maintenance strategies. This paper introduces a novel methodology for bearing prognostics, employing Wavelet Packet Decomposition (WPD) for data preprocessing, Sequential Backward Selection (SBS) for feature selection, and Adaptive Neuro-Fuzzy Inference System (ANFIS) networks for prognostic modeling. The proposed approach consists of two key steps. Firstly, the data undergoes preprocessing through Wavelet Packet Decomposition, enhancing the quality and extracting relevant features. Subsequently, the Remaining Useful Life (RUL) of the bearing is predicted using a degradation model. The accuracy of the proposed method is evaluated using a bearing life dataset obtained from a run-to-failure test (IMS dataset). The results demonstrate the remarkable capability of the ANFIS model to learn and accurately estimate the system’s RUL. By leveraging the combined power of WPD, SBS, and ANFIS, this methodology showcases its potential as an effective prognostic tool for bearing health assessment and proactive maintenance planning.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/ijphm.2024.v15i1.3791","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bearings are critical components extensively used in rotary machines, often being the leading cause of unexpected machine shutdowns. To mitigate system failures, it is crucial to implement effective maintenance strategies. This paper introduces a novel methodology for bearing prognostics, employing Wavelet Packet Decomposition (WPD) for data preprocessing, Sequential Backward Selection (SBS) for feature selection, and Adaptive Neuro-Fuzzy Inference System (ANFIS) networks for prognostic modeling. The proposed approach consists of two key steps. Firstly, the data undergoes preprocessing through Wavelet Packet Decomposition, enhancing the quality and extracting relevant features. Subsequently, the Remaining Useful Life (RUL) of the bearing is predicted using a degradation model. The accuracy of the proposed method is evaluated using a bearing life dataset obtained from a run-to-failure test (IMS dataset). The results demonstrate the remarkable capability of the ANFIS model to learn and accurately estimate the system’s RUL. By leveraging the combined power of WPD, SBS, and ANFIS, this methodology showcases its potential as an effective prognostic tool for bearing health assessment and proactive maintenance planning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 ANFIS 的轴承剩余使用寿命预测框架
轴承是旋转机械中广泛使用的关键部件,往往是导致机器意外停机的主要原因。为了减少系统故障,实施有效的维护策略至关重要。本文采用小波包分解(WPD)进行数据预处理,采用序列反向选择(SBS)进行特征选择,并采用自适应神经模糊推理系统(ANFIS)网络进行预报建模,为轴承预报引入了一种新方法。所提出的方法包括两个关键步骤。首先,通过小波包分解对数据进行预处理,提高质量并提取相关特征。随后,使用退化模型预测轴承的剩余使用寿命(RUL)。使用从运行到失效测试中获得的轴承寿命数据集(IMS 数据集)对所提出方法的准确性进行了评估。结果表明,ANFIS 模型具有出色的学习能力,能准确估计系统的 RUL。通过利用 WPD、SBS 和 ANFIS 的综合能力,该方法展示了其作为轴承健康评估和前瞻性维护规划的有效预报工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Clinical Practice Guidelines on Palliative Sedation Around the World: A Systematic Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1