Kady Lyons, C N Bedore, Aaron B. Carlisle, Lauren Moniz, Timothy L. Odom, Rokeya Ahmed, S. Greiman, Ryan M. Freedman
{"title":"Network Analysis Reveals Species-Specific Organization of Microbial Communities in Four Co-Occurring Elasmobranch Species along the Georgia Coast","authors":"Kady Lyons, C N Bedore, Aaron B. Carlisle, Lauren Moniz, Timothy L. Odom, Rokeya Ahmed, S. Greiman, Ryan M. Freedman","doi":"10.3390/fishes9010034","DOIUrl":null,"url":null,"abstract":"Comparing co-occurring species may provide insights into how aspects of ecology may play a role in influencing their microbial communities. During the 2019 commercial shrimp trawl season off coastal Georgia, swabs of skin, gills, cloaca, and gut were taken for three species of batoids (Butterfly Ray, Bluntnose Stingray, and Atlantic Stingray) and one shark species (Atlantic Sharpnose) for high-throughput sequencing of the V4 region of the bacterial 16S rRNA gene. White muscle was analyzed for stable isotopes (δ13C and δ15N) to evaluate potential niche overlap in these four sympatric mesopredators. Significant differences were found in both δ13C and δ15N signatures across species, suggesting a degree of resource partitioning. When examined within tissue type, the host species had a weak effect on β-diversity for cloaca and skin, with no differences found for gill and gut samples. However, network analysis metrics demonstrated a stronger species-specific effect and distinct microbial community relationships were apparent between the shark and batoids, with the former having tighter networks for both internally- and externally-influenced tissues (gut/cloaca and skin/gills, respectively). Despite overlapping habitat use, species’ microbiomes differed in their organizational structuring that paralleled differences in stable isotope results, suggesting a mediating role of species-specific ecology on bacterial microbiomes.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"7 4","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/fishes9010034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Comparing co-occurring species may provide insights into how aspects of ecology may play a role in influencing their microbial communities. During the 2019 commercial shrimp trawl season off coastal Georgia, swabs of skin, gills, cloaca, and gut were taken for three species of batoids (Butterfly Ray, Bluntnose Stingray, and Atlantic Stingray) and one shark species (Atlantic Sharpnose) for high-throughput sequencing of the V4 region of the bacterial 16S rRNA gene. White muscle was analyzed for stable isotopes (δ13C and δ15N) to evaluate potential niche overlap in these four sympatric mesopredators. Significant differences were found in both δ13C and δ15N signatures across species, suggesting a degree of resource partitioning. When examined within tissue type, the host species had a weak effect on β-diversity for cloaca and skin, with no differences found for gill and gut samples. However, network analysis metrics demonstrated a stronger species-specific effect and distinct microbial community relationships were apparent between the shark and batoids, with the former having tighter networks for both internally- and externally-influenced tissues (gut/cloaca and skin/gills, respectively). Despite overlapping habitat use, species’ microbiomes differed in their organizational structuring that paralleled differences in stable isotope results, suggesting a mediating role of species-specific ecology on bacterial microbiomes.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.